Metabolic homeostasis in fungal infections from the perspective of pathogens, immune cells, and whole-body systems.

IF 8 1区 生物学 Q1 MICROBIOLOGY Microbiology and Molecular Biology Reviews Pub Date : 2024-09-04 DOI:10.1128/mmbr.00171-22
Harshini Weerasinghe, Helen Stölting, Adam J Rose, Ana Traven
{"title":"Metabolic homeostasis in fungal infections from the perspective of pathogens, immune cells, and whole-body systems.","authors":"Harshini Weerasinghe, Helen Stölting, Adam J Rose, Ana Traven","doi":"10.1128/mmbr.00171-22","DOIUrl":null,"url":null,"abstract":"<p><p>SUMMARYThe ability to overcome metabolic stress is a major determinant of outcomes during infections. Pathogens face nutrient and oxygen deprivation in host niches and during their encounter with immune cells. Immune cells require metabolic adaptations for producing antimicrobial compounds and mounting antifungal inflammation. Infection also triggers systemic changes in organ metabolism and energy expenditure that range from an enhanced metabolism to produce energy for a robust immune response to reduced metabolism as infection progresses, which coincides with immune and organ dysfunction. Competition for energy and nutrients between hosts and pathogens means that successful survival and recovery from an infection require a balance between elimination of the pathogen by the immune systems (resistance), and doing so with minimal damage to host tissues and organs (tolerance). Here, we discuss our current knowledge of pathogen, immune cell and systemic metabolism in fungal infections, and the impact of metabolic disorders, such as obesity and diabetes. We put forward the idea that, while our knowledge of the use of metabolic regulation for fungal proliferation and antifungal immune responses (i.e., resistance) has been growing over the years, we also need to study the metabolic mechanisms that control tolerance of fungal pathogens. A comprehensive understanding of how to balance resistance and tolerance by metabolic interventions may provide insights into therapeutic strategies that could be used adjunctly with antifungal drugs to improve patient outcomes.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00171-22","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SUMMARYThe ability to overcome metabolic stress is a major determinant of outcomes during infections. Pathogens face nutrient and oxygen deprivation in host niches and during their encounter with immune cells. Immune cells require metabolic adaptations for producing antimicrobial compounds and mounting antifungal inflammation. Infection also triggers systemic changes in organ metabolism and energy expenditure that range from an enhanced metabolism to produce energy for a robust immune response to reduced metabolism as infection progresses, which coincides with immune and organ dysfunction. Competition for energy and nutrients between hosts and pathogens means that successful survival and recovery from an infection require a balance between elimination of the pathogen by the immune systems (resistance), and doing so with minimal damage to host tissues and organs (tolerance). Here, we discuss our current knowledge of pathogen, immune cell and systemic metabolism in fungal infections, and the impact of metabolic disorders, such as obesity and diabetes. We put forward the idea that, while our knowledge of the use of metabolic regulation for fungal proliferation and antifungal immune responses (i.e., resistance) has been growing over the years, we also need to study the metabolic mechanisms that control tolerance of fungal pathogens. A comprehensive understanding of how to balance resistance and tolerance by metabolic interventions may provide insights into therapeutic strategies that could be used adjunctly with antifungal drugs to improve patient outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从病原体、免疫细胞和全身系统的角度看真菌感染中的代谢平衡。
摘要克服代谢压力的能力是决定感染结果的主要因素。病原体在宿主龛位中以及在与免疫细胞接触时会面临营养和氧气匮乏。免疫细胞需要适应新陈代谢,以产生抗菌化合物并引发抗真菌炎症。感染也会引发器官新陈代谢和能量消耗的系统性变化,从新陈代谢增强以产生能量用于强有力的免疫反应,到随着感染的进展新陈代谢降低,这与免疫和器官功能障碍同时发生。宿主与病原体之间对能量和营养物质的竞争意味着,要想从感染中成功存活和康复,就必须在免疫系统消灭病原体(抵抗力)与尽量减少对宿主组织和器官的损害(耐受力)之间取得平衡。在此,我们将讨论我们目前对真菌感染中病原体、免疫细胞和系统代谢的认识,以及代谢紊乱(如肥胖和糖尿病)的影响。我们提出的观点是,多年来,我们对利用代谢调节真菌增殖和抗真菌免疫反应(即抗性)的认识不断加深,但我们还需要研究控制真菌病原体耐受性的代谢机制。全面了解如何通过代谢干预来平衡抗药性和耐受性,可为治疗策略提供见解,从而与抗真菌药物辅助使用,改善患者预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
18.80
自引率
0.80%
发文量
27
期刊介绍: Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.
期刊最新文献
Enterococcus faecalis: an overlooked cell invader. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Metabolic homeostasis in fungal infections from the perspective of pathogens, immune cells, and whole-body systems. Small molecule communication of Legionella: the ins and outs of autoinducer and nitric oxide signaling. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1