SUMMARYThe human malaria parasite Plasmodium falciparum is known for its ability to maintain lengthy infections that can extend for over a year. This property is derived from the parasite's capacity to continuously alter the antigens expressed on the surface of the infected red blood cell, thereby avoiding antibody recognition and immune destruction. The primary target of the immune system is an antigen called PfEMP1 that serves as a cell surface receptor and enables infected cells to adhere to the vascular endothelium and thus avoid filtration by the spleen. The parasite's genome encodes approximately 60 antigenically distinct forms of PfEMP1, each encoded by individual members of the multicopy var gene family. This provides the parasite with a repertoire of antigenic types that it systematically cycles through over the course of an infection, thereby maintaining an infection until the repertoire is exhausted. While this model of antigenic variation based on var gene switching explains the dynamics of acute infections in individuals with limited anti-malarial immunity, it fails to explain reports of chronic, asymptomatic infections that can last over a decade. Recent field studies have led to a re-evaluation of previous conclusions regarding the prevalence of chronic infections, and the application of new technologies has provided insights into the molecular mechanisms that enable chronic infections and how these processes evolved.
{"title":"Variable surface antigen expression, virulence, and persistent infection by <i>Plasmodium falciparum</i> malaria parasites.","authors":"Evi Hadjimichael, Kirk W Deitsch","doi":"10.1128/mmbr.00114-23","DOIUrl":"https://doi.org/10.1128/mmbr.00114-23","url":null,"abstract":"<p><p>SUMMARYThe human malaria parasite <i>Plasmodium falciparum</i> is known for its ability to maintain lengthy infections that can extend for over a year. This property is derived from the parasite's capacity to continuously alter the antigens expressed on the surface of the infected red blood cell, thereby avoiding antibody recognition and immune destruction. The primary target of the immune system is an antigen called PfEMP1 that serves as a cell surface receptor and enables infected cells to adhere to the vascular endothelium and thus avoid filtration by the spleen. The parasite's genome encodes approximately 60 antigenically distinct forms of PfEMP1, each encoded by individual members of the multicopy <i>var</i> gene family. This provides the parasite with a repertoire of antigenic types that it systematically cycles through over the course of an infection, thereby maintaining an infection until the repertoire is exhausted. While this model of antigenic variation based on <i>var</i> gene switching explains the dynamics of acute infections in individuals with limited anti-malarial immunity, it fails to explain reports of chronic, asymptomatic infections that can last over a decade. Recent field studies have led to a re-evaluation of previous conclusions regarding the prevalence of chronic infections, and the application of new technologies has provided insights into the molecular mechanisms that enable chronic infections and how these processes evolved.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0011423"},"PeriodicalIF":8.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SUMMARYEnterococcus faecalis is a significant resident of the gastrointestinal tract of most animals, including humans. Although generally non-pathogenic in healthy hosts, this microbe is adept at the exploitation of compromises in host immune functions, resulting in life-threatening opportunistic infections whose treatments are complicated by a high degree of intrinsic and acquired resistance to antimicrobial chemotherapy. Historically, progress in enterococcal research was limited by a lack of experimental models that replicate natural infection pathways and the relevance of in vitro studies to the natural biology of the organism. In this review, we summarize the history of enterococcal research during the 20th and early 21st centuries and describe more recent genetic and genomic tools and screens developed to address challenges in the field. We also describe how the results of recent studies reveal the importance of previously uncharacterized enterococcal genes, and we provide examples of interesting determinants that have emerged as important contributors to enterococcal biology. These factors may also serve as targets for future vaccines and chemotherapeutic agents to combat life-threatening hospital infections.
{"title":"Insights into ecology, pathogenesis, and biofilm formation of <i>Enterococcus faecalis</i> from functional genomics.","authors":"Julia L E Willett, Gary M Dunny","doi":"10.1128/mmbr.00081-23","DOIUrl":"https://doi.org/10.1128/mmbr.00081-23","url":null,"abstract":"<p><p>SUMMARY<i>Enterococcus faecalis</i> is a significant resident of the gastrointestinal tract of most animals, including humans. Although generally non-pathogenic in healthy hosts, this microbe is adept at the exploitation of compromises in host immune functions, resulting in life-threatening opportunistic infections whose treatments are complicated by a high degree of intrinsic and acquired resistance to antimicrobial chemotherapy. Historically, progress in enterococcal research was limited by a lack of experimental models that replicate natural infection pathways and the relevance of <i>in vitro</i> studies to the natural biology of the organism. In this review, we summarize the history of enterococcal research during the 20th and early 21st centuries and describe more recent genetic and genomic tools and screens developed to address challenges in the field. We also describe how the results of recent studies reveal the importance of previously uncharacterized enterococcal genes, and we provide examples of interesting determinants that have emerged as important contributors to enterococcal biology. These factors may also serve as targets for future vaccines and chemotherapeutic agents to combat life-threatening hospital infections.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0008123"},"PeriodicalIF":8.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nikhila S Tanneti, Helen A Stillwell, Susan R Weiss
SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.
{"title":"Human coronaviruses: activation and antagonism of innate immune responses.","authors":"Nikhila S Tanneti, Helen A Stillwell, Susan R Weiss","doi":"10.1128/mmbr.00016-23","DOIUrl":"10.1128/mmbr.00016-23","url":null,"abstract":"<p><p>SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0001623"},"PeriodicalIF":8.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142854755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18Epub Date: 2024-10-09DOI: 10.1128/mmbr.00193-23
Anna Schumann, Ahmed Gaballa, Martin Wiedmann
SUMMARYLipopolysaccharides (LPS) are an integral part of the outer membrane of Gram-negative bacteria and play essential structural and functional roles in maintaining membrane integrity as well as in stress response and virulence. LPS comprises a membrane-anchored lipid A group, a sugar-based core region, and an O-antigen formed by repeating oligosaccharide units. 3-Deoxy-D-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the minimum LPS component required for bacterial survival. While LPS modifications are not essential, they play multifaceted roles in stress response and host-pathogen interactions. Gram-negative bacteria encode several distinct LPS-modifying phosphoethanolamine transferases (PET) that add phosphoethanolamine (pEtN) to lipid A or the core region of LPS. The pet genes differ in their genomic locations, regulation mechanisms, and modification targets of the encoded enzyme, consistent with their various roles in different growth niches and under varied stress conditions. The discovery of mobile colistin resistance genes, which represent lipid A-modifying pet genes that are encoded on mobile elements and associated with resistance to the last-resort antibiotic colistin, has led to substantial interest in PETs and pEtN-modified LPS over the last decade. Here, we will review the current knowledge of the functional diversity of pEtN-based LPS modifications, including possible roles in niche-specific fitness advantages and resistance to host-produced antimicrobial peptides, and discuss how the genetic and structural diversities of PETs may impact their function. An improved understanding of the PET group will further enhance our comprehension of the stress response and virulence of Gram-negative bacteria and help contextualize host-pathogen interactions.
摘要脂多糖(LPS)是革兰氏阴性细菌外膜的一个组成部分,在维持膜完整性、应激反应和毒力方面发挥着重要的结构和功能作用。LPS 由膜锚定脂质 A 基团、糖基核心区和由重复寡糖单位形成的 O 抗原组成。3-Deoxy-D-manno-octulosonic acid-lipid A(Kdo2-lipid A)是细菌生存所需的最小 LPS 成分。虽然 LPS 修饰并非必不可少,但它们在应激反应和宿主-病原体相互作用中发挥着多方面的作用。革兰氏阴性细菌编码几种不同的 LPS 修饰磷乙醇胺转移酶(PET),可将磷乙醇胺(pEtN)添加到脂质 A 或 LPS 的核心区域。这些 PET 基因的基因组位置、调控机制和编码酶的修饰靶标各不相同,这与它们在不同生长环境和不同压力条件下的不同作用是一致的。移动可乐菌素抗性基因是在移动元件上编码的脂质 A 修饰 pet 基因,与对最后一种抗生素可乐菌素的抗性有关,该基因的发现在过去十年中引起了人们对 PET 和 pEtN 修饰 LPS 的极大兴趣。在这里,我们将回顾目前关于基于 pEtN 的 LPS 修饰功能多样性的知识,包括在特定生态位的适应优势和对宿主产生的抗菌肽的抗性方面可能发挥的作用,并讨论 PET 的遗传和结构多样性可能如何影响其功能。加深对 PET 组的了解将进一步提高我们对革兰氏阴性细菌的应激反应和毒力的理解,并有助于了解宿主与病原体之间相互作用的背景。
{"title":"The multifaceted roles of phosphoethanolamine-modified lipopolysaccharides: from stress response and virulence to cationic antimicrobial resistance.","authors":"Anna Schumann, Ahmed Gaballa, Martin Wiedmann","doi":"10.1128/mmbr.00193-23","DOIUrl":"10.1128/mmbr.00193-23","url":null,"abstract":"<p><p>SUMMARYLipopolysaccharides (LPS) are an integral part of the outer membrane of Gram-negative bacteria and play essential structural and functional roles in maintaining membrane integrity as well as in stress response and virulence. LPS comprises a membrane-anchored lipid A group, a sugar-based core region, and an O-antigen formed by repeating oligosaccharide units. 3-Deoxy-D-<i>manno</i>-octulosonic acid-lipid A (Kdo<sub>2</sub>-lipid A) is the minimum LPS component required for bacterial survival. While LPS modifications are not essential, they play multifaceted roles in stress response and host-pathogen interactions. Gram-negative bacteria encode several distinct LPS-modifying phosphoethanolamine transferases (PET) that add phosphoethanolamine (pEtN) to lipid A or the core region of LPS. The <i>pet</i> genes differ in their genomic locations, regulation mechanisms, and modification targets of the encoded enzyme, consistent with their various roles in different growth niches and under varied stress conditions. The discovery of mobile colistin resistance genes, which represent lipid A-modifying <i>pet</i> genes that are encoded on mobile elements and associated with resistance to the last-resort antibiotic colistin, has led to substantial interest in PETs and pEtN-modified LPS over the last decade. Here, we will review the current knowledge of the functional diversity of pEtN-based LPS modifications, including possible roles in niche-specific fitness advantages and resistance to host-produced antimicrobial peptides, and discuss how the genetic and structural diversities of PETs may impact their function. An improved understanding of the PET group will further enhance our comprehension of the stress response and virulence of Gram-negative bacteria and help contextualize host-pathogen interactions.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0019323"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18Epub Date: 2024-10-30DOI: 10.1128/mmbr.00126-24
Jack K Waters, Bart A Eijkelkamp
SUMMARYThe lipid homeostasis pathways of bacterial pathogens have been studied comprehensively for their biochemical functionality. However, new and refined technologies have supported the interrogation of bacterial lipid and fatty acid homeostasis mechanisms in more complex environments, such as mammalian host niches. In particular, emerging findings on the breadth and depth of host fatty acid uptake have demonstrated their importance beyond merely fatty acid utilization for membrane synthesis, as they can contribute to virulence factor regulation, pathogenesis, and group-based behaviors. Lipid homeostasis is also intertwined with other metabolic and physiological processes in the bacterial cells, which appear to be largely unique per species, but overarching themes can be derived. This review combines the latest biochemical and structural findings and places these in the context of bacterial pathogenesis, thereby shedding light on the far-reaching implications of lipid homeostasis on bacterial success.
{"title":"Bacterial acquisition of host fatty acids has far-reaching implications on virulence.","authors":"Jack K Waters, Bart A Eijkelkamp","doi":"10.1128/mmbr.00126-24","DOIUrl":"10.1128/mmbr.00126-24","url":null,"abstract":"<p><p>SUMMARYThe lipid homeostasis pathways of bacterial pathogens have been studied comprehensively for their biochemical functionality. However, new and refined technologies have supported the interrogation of bacterial lipid and fatty acid homeostasis mechanisms in more complex environments, such as mammalian host niches. In particular, emerging findings on the breadth and depth of host fatty acid uptake have demonstrated their importance beyond merely fatty acid utilization for membrane synthesis, as they can contribute to virulence factor regulation, pathogenesis, and group-based behaviors. Lipid homeostasis is also intertwined with other metabolic and physiological processes in the bacterial cells, which appear to be largely unique per species, but overarching themes can be derived. This review combines the latest biochemical and structural findings and places these in the context of bacterial pathogenesis, thereby shedding light on the far-reaching implications of lipid homeostasis on bacterial success.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0012624"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653727/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18Epub Date: 2024-10-04DOI: 10.1128/mmbr.00161-23
Katrina M Jackson, Marcus de Melo Teixeira, Bridget M Barker
SUMMARYCoccidioides immitis and Coccidioides posadasii are fungal pathogens that cause systemic mycoses and are prevalent in arid regions in the Americas. While C. immitis mainly occurs in California and Washington, C. posadasii is widely distributed across North and South America. Both species induce coccidioidomycosis (San Joaquin Valley fever or, more commonly, Valley fever), with reported cases surging in the United States, notably in California and Arizona. Moreover, cases in Argentina, Brazil, and Mexico are on the rise. Climate change and environmental alterations conducive to Coccidioides spp. proliferation have been recently explored. Diagnostic challenges contribute to delayed treatment initiation, compounded by limited therapeutic options. Although antifungal drugs are often effective treatments, some patients do not respond to current therapies, underscoring the urgent need for a vaccine, particularly for vulnerable populations over 60 years old relocating to endemic areas. Despite recent progress, gaps persist in the understanding of Coccidioides ecology, host immune responses, and vaccine development. This review synthesizes recent research advancements in Coccidioides ecology, genomics, and immune responses, emphasizing ongoing efforts to develop a human vaccine.
摘要:水霉球孢子菌(Coccidioides immitis)和柱孢球孢子菌(Coccidioides posadasii)是引起系统性真菌病的真菌病原体,在美洲干旱地区十分普遍。C. immitis 主要分布在加利福尼亚州和华盛顿州,而 C. posadasii 则广泛分布在北美洲和南美洲。这两种球孢子菌都会诱发球孢子菌病(圣华金谷热或更常见的谷热),在美国,特别是加利福尼亚州和亚利桑那州报告的病例激增。此外,阿根廷、巴西和墨西哥的病例也在增加。气候变化和环境变化有利于球孢子虫属的扩散,最近对此进行了探讨。诊断方面的挑战导致治疗启动延迟,而有限的治疗方案又使情况更加复杂。虽然抗真菌药物通常是有效的治疗方法,但有些患者对目前的疗法没有反应,这突出表明迫切需要疫苗,特别是针对迁往流行地区的 60 岁以上易感人群。尽管最近取得了进展,但人们对球孢子菌生态学、宿主免疫反应和疫苗开发的认识仍存在差距。这篇综述综述了球孢子菌生态学、基因组学和免疫反应方面的最新研究进展,并强调了正在进行的人类疫苗开发工作。
{"title":"From soil to clinic: current advances in understanding <i>Coccidioides</i> and coccidioidomycosis.","authors":"Katrina M Jackson, Marcus de Melo Teixeira, Bridget M Barker","doi":"10.1128/mmbr.00161-23","DOIUrl":"10.1128/mmbr.00161-23","url":null,"abstract":"<p><p>SUMMARY<i>Coccidioides immitis</i> and <i>Coccidioides posadasii</i> are fungal pathogens that cause systemic mycoses and are prevalent in arid regions in the Americas. While <i>C. immitis</i> mainly occurs in California and Washington, <i>C. posadasii</i> is widely distributed across North and South America. Both species induce coccidioidomycosis (San Joaquin Valley fever or, more commonly, Valley fever), with reported cases surging in the United States, notably in California and Arizona. Moreover, cases in Argentina, Brazil, and Mexico are on the rise. Climate change and environmental alterations conducive to <i>Coccidioides</i> spp. proliferation have been recently explored. Diagnostic challenges contribute to delayed treatment initiation, compounded by limited therapeutic options. Although antifungal drugs are often effective treatments, some patients do not respond to current therapies, underscoring the urgent need for a vaccine, particularly for vulnerable populations over 60 years old relocating to endemic areas. Despite recent progress, gaps persist in the understanding of <i>Coccidioides</i> ecology, host immune responses, and vaccine development. This review synthesizes recent research advancements in <i>Coccidioides</i> ecology, genomics, and immune responses, emphasizing ongoing efforts to develop a human vaccine.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0016123"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653724/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18Epub Date: 2024-11-11DOI: 10.1128/mmbr.00205-23
Ulrich Kück, Stefanie Pöggeler
SUMMARYThe striatin-interacting phosphatase and kinase (STRIPAK) complex is involved in the regulation of many developmental processes in eukaryotic microorganisms and all animals, including humans. STRIPAK is a component of protein phosphatase 2A (PP2A), a highly conserved serine-threonine phosphatase composed of catalytic subunits (PP2Ac), a scaffolding subunit (PP2AA) and various substrate-directing B regulatory subunits. In particular, the B''' regulatory subunit called striatin has evoked major interest over the last 20 years. Studies in fungal systems have contributed substantially to our current knowledge about STRIPAK composition, assembly, and cellular localization, as well as its regulatory role in autophagy and the morphology of fungal development. STRIPAK represents a signaling hub with many kinases and thus integrates upstream and downstream information from many conserved eukaryotic signaling pathways. A profound understanding of STRIPAK's regulatory role in fungi opens the gateway to understanding the multifarious functions carried out by STRIPAK in higher eukaryotes, including its contribution to malignant cell growth.
{"title":"STRIPAK, a fundamental signaling hub of eukaryotic development.","authors":"Ulrich Kück, Stefanie Pöggeler","doi":"10.1128/mmbr.00205-23","DOIUrl":"10.1128/mmbr.00205-23","url":null,"abstract":"<p><p><b>SUMMARY</b>The striatin-interacting phosphatase and kinase (STRIPAK) complex is involved in the regulation of many developmental processes in eukaryotic microorganisms and all animals, including humans. STRIPAK is a component of protein phosphatase 2A (PP2A), a highly conserved serine-threonine phosphatase composed of catalytic subunits (PP2Ac), a scaffolding subunit (PP2AA) and various substrate-directing B regulatory subunits. In particular, the B''' regulatory subunit called striatin has evoked major interest over the last 20 years. Studies in fungal systems have contributed substantially to our current knowledge about STRIPAK composition, assembly, and cellular localization, as well as its regulatory role in autophagy and the morphology of fungal development. STRIPAK represents a signaling hub with many kinases and thus integrates upstream and downstream information from many conserved eukaryotic signaling pathways. A profound understanding of STRIPAK's regulatory role in fungi opens the gateway to understanding the multifarious functions carried out by STRIPAK in higher eukaryotes, including its contribution to malignant cell growth.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0020523"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18Epub Date: 2024-10-21DOI: 10.1128/mmbr.00066-22
Nour El Husseini, Jared A Carter, Vincent T Lee
SUMMARYUrinary tract infection (UTI) is one of the most common infections in otherwise healthy individuals. UTI is also common in healthcare settings where patients often require urinary catheters to alleviate urinary retention. The placement of a urinary catheter often leads to catheter-associated urinary tract infection (CAUTI) caused by a broad range of opportunistic pathogens, commonly referred to as ESKAPE (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter) pathogens. Our understanding of CAUTI is complicated by the differences in pathogens, in initial microbial load, changes that occur due to the duration of catheterization, and the relationship between infection (colonization) and disease symptoms. To advance our understanding of CAUTI, we reviewed UTI and CAUTI caused by Pseudomonas aeruginosa which is unique in that it is not commonly found associated with human microbiomes. For this reason, the ability of P. aeruginosa to cause UTI and CAUTI requires the introduction of the bacteria to the bladder from catheterization. Once in the host, the virulence factors used by P. aeruginosa in these infections remain an area of ongoing research. In this review, we will discuss studies that focus on P. aeruginosa UTI and CAUTI to better understand the infection dynamics and outcome in clinical settings, virulence factors associated with P. aeruginosa isolated from the urinary tract, and animal studies to test which bacterial factors are required for this infection. Understanding how P. aeruginosa can cause UTI and CAUTI can provide an understanding of how these infections initiate and progress and may provide possible strategies to limit these infections.
摘要尿路感染(UTI)是健康人最常见的感染之一。尿路感染在医疗机构中也很常见,因为病人通常需要使用导尿管来缓解尿潴留。导尿管的放置通常会导致导尿管相关性尿路感染(CAUTI),由多种机会性病原体引起,这些病原体通常被称为 ESKAPE(肠球菌、葡萄球菌、克雷伯氏菌、不动杆菌、假单胞菌和肠杆菌)病原体。我们对 CAUTI 的了解因病原体、初始微生物负荷、导管插入时间的变化以及感染(定植)和疾病症状之间的关系而变得复杂。为了加深对 CAUTI 的了解,我们回顾了由铜绿假单胞菌引起的 UTI 和 CAUTI。因此,铜绿假单胞菌引起尿道炎和膀胱炎需要通过导尿将细菌引入膀胱。一旦进入宿主体内,铜绿假单胞菌在这些感染中使用的毒力因子仍是一个持续研究的领域。在本综述中,我们将讨论以铜绿假单胞菌UTI和CAUTI为重点的研究,以便更好地了解临床环境中的感染动态和结果、从泌尿道分离出的铜绿假单胞菌的相关毒力因子,以及测试这种感染需要哪些细菌因子的动物研究。了解铜绿假单胞菌如何引起UTI和CAUTI,就能了解这些感染是如何开始和发展的,并为限制这些感染提供可能的策略。
{"title":"Urinary tract infections and catheter-associated urinary tract infections caused by <i>Pseudomonas aeruginosa</i>.","authors":"Nour El Husseini, Jared A Carter, Vincent T Lee","doi":"10.1128/mmbr.00066-22","DOIUrl":"10.1128/mmbr.00066-22","url":null,"abstract":"<p><p>SUMMARYUrinary tract infection (UTI) is one of the most common infections in otherwise healthy individuals. UTI is also common in healthcare settings where patients often require urinary catheters to alleviate urinary retention. The placement of a urinary catheter often leads to catheter-associated urinary tract infection (CAUTI) caused by a broad range of opportunistic pathogens, commonly referred to as ESKAPE (<i>Enterococcus</i>, <i>Staphylococcus</i>, <i>Klebsiella</i>, <i>Acinetobacter</i>, <i>Pseudomonas</i>, and <i>Enterobacter</i>) pathogens. Our understanding of CAUTI is complicated by the differences in pathogens, in initial microbial load, changes that occur due to the duration of catheterization, and the relationship between infection (colonization) and disease symptoms. To advance our understanding of CAUTI, we reviewed UTI and CAUTI caused by <i>Pseudomonas aeruginosa</i> which is unique in that it is not commonly found associated with human microbiomes. For this reason, the ability of <i>P. aeruginosa</i> to cause UTI and CAUTI requires the introduction of the bacteria to the bladder from catheterization. Once in the host, the virulence factors used by <i>P. aeruginosa</i> in these infections remain an area of ongoing research. In this review, we will discuss studies that focus on <i>P. aeruginosa</i> UTI and CAUTI to better understand the infection dynamics and outcome in clinical settings, virulence factors associated with <i>P. aeruginosa</i> isolated from the urinary tract, and animal studies to test which bacterial factors are required for this infection. Understanding how <i>P. aeruginosa</i> can cause UTI and CAUTI can provide an understanding of how these infections initiate and progress and may provide possible strategies to limit these infections.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0006622"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653733/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18Epub Date: 2024-10-23DOI: 10.1128/mmbr.00014-24
Yu-Chen Chuang, J-H James Ou
SUMMARYHepatitis B virus (HBV) is an important human pathogen that chronically infects approximately 250 million people in the world, resulting in ~1 million deaths annually. This virus is a hepatotropic virus and can cause severe liver diseases including cirrhosis and hepatocellular carcinoma. The entry of HBV into hepatocytes is initiated by the interaction of its envelope proteins with its receptors. This is followed by the delivery of the viral nucleocapsid to the nucleus for the release of its genomic DNA and the transcription of viral RNAs. The assembly of the viral capsid particles may then take place in the nucleus or the cytoplasm and may involve cellular membranes. This is followed by the egress of the virus from infected cells. In recent years, significant research progresses had been made toward understanding the entry, the assembly, and the egress of HBV particles. In this review, we discuss the molecular pathways of these processes and compare them with those used by hepatitis delta virus and hepatitis C virus , two other hepatotropic viruses that are also enveloped. The understanding of these processes will help us to understand how HBV replicates and causes diseases, which will help to improve the treatments for HBV patients.
{"title":"Hepatitis B virus entry, assembly, and egress.","authors":"Yu-Chen Chuang, J-H James Ou","doi":"10.1128/mmbr.00014-24","DOIUrl":"10.1128/mmbr.00014-24","url":null,"abstract":"<p><p>SUMMARYHepatitis B virus (HBV) is an important human pathogen that chronically infects approximately 250 million people in the world, resulting in ~1 million deaths annually. This virus is a hepatotropic virus and can cause severe liver diseases including cirrhosis and hepatocellular carcinoma. The entry of HBV into hepatocytes is initiated by the interaction of its envelope proteins with its receptors. This is followed by the delivery of the viral nucleocapsid to the nucleus for the release of its genomic DNA and the transcription of viral RNAs. The assembly of the viral capsid particles may then take place in the nucleus or the cytoplasm and may involve cellular membranes. This is followed by the egress of the virus from infected cells. In recent years, significant research progresses had been made toward understanding the entry, the assembly, and the egress of HBV particles. In this review, we discuss the molecular pathways of these processes and compare them with those used by hepatitis delta virus and hepatitis C virus , two other hepatotropic viruses that are also enveloped. The understanding of these processes will help us to understand how HBV replicates and causes diseases, which will help to improve the treatments for HBV patients.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0001424"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18Epub Date: 2024-11-07DOI: 10.1128/mmbr.00029-23
Toni Gabaldón
SUMMARYCandida parapsilosis is a common agent of candidiasis that has gained increased attention in recent years, culminating with its recent consideration as a high-priority fungal pathogen by the World Health Organization. Reasons for this classification are the recent surge in incidence and the alarmingly growing rates of drug and multidrug resistance. In addition, several closely related species such as Candida metapsilosis and Candida orthopsilosis may represent recently emerged opportunistic pathogens originated from environmental niches through interspecies hybridization. Here, I review recent research focused on the potential origin and spread of drug resistance and of emerging species in this complex. I will also discuss open questions regarding the possible implications of human activities in these two epidemiological phenomena.
{"title":"Threats from the <i>Candida parapsilosis</i> complex: the surge of multidrug resistance and a hotbed for new emerging pathogens.","authors":"Toni Gabaldón","doi":"10.1128/mmbr.00029-23","DOIUrl":"10.1128/mmbr.00029-23","url":null,"abstract":"<p><p>SUMMARY<i>Candida parapsilosis</i> is a common agent of candidiasis that has gained increased attention in recent years, culminating with its recent consideration as a high-priority fungal pathogen by the World Health Organization. Reasons for this classification are the recent surge in incidence and the alarmingly growing rates of drug and multidrug resistance. In addition, several closely related species such as <i>Candida metapsilosis</i> and <i>Candida orthopsilosis</i> may represent recently emerged opportunistic pathogens originated from environmental niches through interspecies hybridization. Here, I review recent research focused on the potential origin and spread of drug resistance and of emerging species in this complex. I will also discuss open questions regarding the possible implications of human activities in these two epidemiological phenomena.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0002923"},"PeriodicalIF":8.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653726/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}