首页 > 最新文献

Microbiology and Molecular Biology Reviews最新文献

英文 中文
Host specificity of gut microbiota associated with social bees: patterns and processes.
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-20 DOI: 10.1128/mmbr.00080-23
Florent Mazel, Aiswarya Prasad, Philipp Engel

SUMMARYGut microbes provide benefits to some animals, but their distribution and effects across diverse hosts are still poorly described. There is accumulating evidence for host specificity (i.e., a pattern where different microbes tend to associate with distinct host lineages), but the causes and consequences of this pattern are unclear. Combining experimental tests in the laboratory with broad surveys in the wild is a promising approach to gaining a comprehensive and mechanistic understanding of host specificity prevalence, origin, and importance. Social bees represent an ideal testbed for this endeavor because they are phylogenetically and functionally diverse, with host-specific, stable, and tractable gut microbiota. Furthermore, the western honeybee (Apis mellifera) is an emerging experimental model system for studying microbiota-host interactions. In this review, we summarize data on the prevalence and strength of host specificity of the social bee gut microbiota (bumblebees, stingless bees, and honeybees), as well as the potential and proven ecological and molecular mechanisms that maintain host specificity. Overall, we found that host specificity in bees is relatively strong and likely results from several processes, including host filtering mediated by the immune system and priority effects. However, more research is needed across multiple social bee species to confirm these findings. To help future research, we summarize emerging hypotheses in the field and propose several experimental and comparative tests. Finally, we conclude this review by highlighting the need to understand how host specificity can influence host health.

{"title":"Host specificity of gut microbiota associated with social bees: patterns and processes.","authors":"Florent Mazel, Aiswarya Prasad, Philipp Engel","doi":"10.1128/mmbr.00080-23","DOIUrl":"https://doi.org/10.1128/mmbr.00080-23","url":null,"abstract":"<p><p>SUMMARYGut microbes provide benefits to some animals, but their distribution and effects across diverse hosts are still poorly described. There is accumulating evidence for host specificity (i.e., a pattern where different microbes tend to associate with distinct host lineages), but the causes and consequences of this pattern are unclear. Combining experimental tests in the laboratory with broad surveys in the wild is a promising approach to gaining a comprehensive and mechanistic understanding of host specificity prevalence, origin, and importance. Social bees represent an ideal testbed for this endeavor because they are phylogenetically and functionally diverse, with host-specific, stable, and tractable gut microbiota. Furthermore, the western honeybee (<i>Apis mellifera</i>) is an emerging experimental model system for studying microbiota-host interactions. In this review, we summarize data on the prevalence and strength of host specificity of the social bee gut microbiota (bumblebees, stingless bees, and honeybees), as well as the potential and proven ecological and molecular mechanisms that maintain host specificity. Overall, we found that host specificity in bees is relatively strong and likely results from several processes, including host filtering mediated by the immune system and priority effects. However, more research is needed across multiple social bee species to confirm these findings. To help future research, we summarize emerging hypotheses in the field and propose several experimental and comparative tests. Finally, we conclude this review by highlighting the need to understand how host specificity can influence host health.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0008023"},"PeriodicalIF":8.0,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mycobiome: an underexplored kingdom in cancer. 霉菌生物群:一个未被充分探索的癌症王国。
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-14 DOI: 10.1128/mmbr.00261-24
Yan-Yan Sun, Ning-Ning Liu

SUMMARYThe human microbiome, including bacteria, fungi, archaea, and viruses, is intimately linked to both health and disease. The relationship between bacteria and disease has received much attention and intensive investigation, while that of the fungal microbiome, also known as mycobiome, has lagged far behind bacteria. There is growing evidence showing mycobiome dysbiosis in cancer patients, and certain cancer-specific fungi may contribute to cancer progression by interacting with both host and bacteria. It was also demonstrated that the role of fungi-derived products in cancer should also not be underestimated. Therefore, investigating how fungal pathogenesis contributes to the onset and spread of cancer would yield crucial information for cancer diagnosis, prevention, and anti-cancer therapy.

{"title":"Mycobiome: an underexplored kingdom in cancer.","authors":"Yan-Yan Sun, Ning-Ning Liu","doi":"10.1128/mmbr.00261-24","DOIUrl":"https://doi.org/10.1128/mmbr.00261-24","url":null,"abstract":"<p><p>SUMMARYThe human microbiome, including bacteria, fungi, archaea, and viruses, is intimately linked to both health and disease. The relationship between bacteria and disease has received much attention and intensive investigation, while that of the fungal microbiome, also known as mycobiome, has lagged far behind bacteria. There is growing evidence showing mycobiome dysbiosis in cancer patients, and certain cancer-specific fungi may contribute to cancer progression by interacting with both host and bacteria. It was also demonstrated that the role of fungi-derived products in cancer should also not be underestimated. Therefore, investigating how fungal pathogenesis contributes to the onset and spread of cancer would yield crucial information for cancer diagnosis, prevention, and anti-cancer therapy.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0026124"},"PeriodicalIF":8.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143624646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A call for healing and unity.
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-02-27 DOI: 10.1128/mmbr.00063-25
Patrick D Schloss
{"title":"A call for healing and unity.","authors":"Patrick D Schloss","doi":"10.1128/mmbr.00063-25","DOIUrl":"https://doi.org/10.1128/mmbr.00063-25","url":null,"abstract":"","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0006325"},"PeriodicalIF":8.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A call for the United States to continue investing in science.
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-02-27 DOI: 10.1128/mmbr.00072-25
Ira Blader, Felicia Goodrum, Michael J Imperiale, Arturo Casadevall, Cesar A Arias, Andreas Baumler, Carey-Ann D Burnham, Christina A Cuomo, Corrella S Detweiler, Graeme N Forrest, Jack A Gilbert, Susan Lovett, Stanley Maloy, Alexander McAdam, Irene Newton, Gemma Reguera, George A O'Toole, Patrick D Schloss, Ashley Shade, Marvin Whiteley
{"title":"A call for the United States to continue investing in science.","authors":"Ira Blader, Felicia Goodrum, Michael J Imperiale, Arturo Casadevall, Cesar A Arias, Andreas Baumler, Carey-Ann D Burnham, Christina A Cuomo, Corrella S Detweiler, Graeme N Forrest, Jack A Gilbert, Susan Lovett, Stanley Maloy, Alexander McAdam, Irene Newton, Gemma Reguera, George A O'Toole, Patrick D Schloss, Ashley Shade, Marvin Whiteley","doi":"10.1128/mmbr.00072-25","DOIUrl":"10.1128/mmbr.00072-25","url":null,"abstract":"","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0007225"},"PeriodicalIF":8.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent developments in Aspergillus fumigatus research: diversity, drugs, and disease.
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-02-10 DOI: 10.1128/mmbr.00011-23
Nicole Kordana, Angus Johnson, Katherine Quinn, Joshua J Obar, Robert A Cramer

SUMMARYAdvances in modern medical therapies for many previously intractable human diseases have improved patient outcomes. However, successful disease treatment outcomes are often prevented due to invasive fungal infections caused by the environmental mold Aspergillus fumigatus. As contemporary antifungal therapies have not experienced the same robust advances as other medical therapies, defining mechanisms of A. fumigatus disease initiation and progression remains a critical research priority. To this end, the World Health Organization recently identified A. fumigatus as a research priority human fungal pathogen and the Centers for Disease Control has highlighted the emergence of triazole-resistant A. fumigatus isolates. The expansion in the diversity of host populations susceptible to aspergillosis and the complex and dynamic A. fumigatus genotypic and phenotypic diversity call for a reinvigorated assessment of aspergillosis pathobiological and drug-susceptibility mechanisms. Here, we summarize recent advancements in the field and discuss challenges in our understanding of A. fumigatus heterogeneity and its pathogenesis in diverse host populations.

{"title":"Recent developments in <i>Aspergillus fumigatus</i> research: diversity, drugs, and disease.","authors":"Nicole Kordana, Angus Johnson, Katherine Quinn, Joshua J Obar, Robert A Cramer","doi":"10.1128/mmbr.00011-23","DOIUrl":"https://doi.org/10.1128/mmbr.00011-23","url":null,"abstract":"<p><p>SUMMARYAdvances in modern medical therapies for many previously intractable human diseases have improved patient outcomes. However, successful disease treatment outcomes are often prevented due to invasive fungal infections caused by the environmental mold <i>Aspergillus fumigatus</i>. As contemporary antifungal therapies have not experienced the same robust advances as other medical therapies, defining mechanisms of <i>A. fumigatus</i> disease initiation and progression remains a critical research priority. To this end, the World Health Organization recently identified <i>A. fumigatus</i> as a research priority human fungal pathogen and the Centers for Disease Control has highlighted the emergence of triazole-resistant <i>A. fumigatus</i> isolates. The expansion in the diversity of host populations susceptible to aspergillosis and the complex and dynamic <i>A. fumigatus</i> genotypic and phenotypic diversity call for a reinvigorated assessment of aspergillosis pathobiological and drug-susceptibility mechanisms. Here, we summarize recent advancements in the field and discuss challenges in our understanding of <i>A. fumigatus</i> heterogeneity and its pathogenesis in diverse host populations.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0001123"},"PeriodicalIF":8.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryptococcal nutrient acquisition and pathogenesis: dining on the host.
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-02-10 DOI: 10.1128/mmbr.00015-23
John R Perfect, James W Kronstad

SUMMARYPathogens must acquire essential nutrients to successfully colonize and proliferate in host tissue. Additionally, nutrients provide signals that condition pathogen deployment of factors that promote disease. A series of transcriptomics experiments over the last 20 years, primarily with Cryptococcus neoformans and to a lesser extent with Cryptococcus gattii, provide insights into the nutritional requirements for proliferation in host tissues. Notably, the identified functions include a number of transporters for key nutrients including sugars, amino acids, metals, and phosphate. Here, we first summarize the in vivo gene expression studies and then discuss the follow-up analyses that specifically test the relevance of the identified transporters for the ability of the pathogens to cause disease. The conclusion is that predictions based on transcriptional profiling of cryptococcal cells in infected tissue are well supported by subsequent investigations using targeted mutations. Overall, the combination of transcriptomic and genetic approaches provides substantial insights into the nutritional requirements that underpin proliferation in the host.

{"title":"Cryptococcal nutrient acquisition and pathogenesis: dining on the host.","authors":"John R Perfect, James W Kronstad","doi":"10.1128/mmbr.00015-23","DOIUrl":"https://doi.org/10.1128/mmbr.00015-23","url":null,"abstract":"<p><p><b>SUMMARY</b>Pathogens must acquire essential nutrients to successfully colonize and proliferate in host tissue. Additionally, nutrients provide signals that condition pathogen deployment of factors that promote disease. A series of transcriptomics experiments over the last 20 years, primarily with <i>Cryptococcus neoformans</i> and to a lesser extent with <i>Cryptococcus gattii</i>, provide insights into the nutritional requirements for proliferation in host tissues. Notably, the identified functions include a number of transporters for key nutrients including sugars, amino acids, metals, and phosphate. Here, we first summarize the <i>in vivo</i> gene expression studies and then discuss the follow-up analyses that specifically test the relevance of the identified transporters for the ability of the pathogens to cause disease. The conclusion is that predictions based on transcriptional profiling of cryptococcal cells in infected tissue are well supported by subsequent investigations using targeted mutations. Overall, the combination of transcriptomic and genetic approaches provides substantial insights into the nutritional requirements that underpin proliferation in the host.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0001523"},"PeriodicalIF":8.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How human papillomavirus (HPV) targets DNA repair pathways for viral replication: from guardian to accomplice.
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-01-27 DOI: 10.1128/mmbr.00153-23
Arushi Vats, Laimonis Laimins

SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles. HPVs activate key DDR pathways such as ATM, ATR, and FA, which are critical for maintaining genomic integrity but are often dysregulated in cancers. Importantly, these DDR pathways are essential for HPV replication in undifferentiated cells and amplification upon differentiation. The ability to modulate these DDR pathways not only enables HPV persistence but also contributes to cellular transformation. In this review, we discuss the recent advances in understanding the mechanisms by which HPV manipulates the host DDR pathways and how these depend upon enhanced topoisomerase activity and R-loop formation. Furthermore, the strategies to manipulate DDR pathways utilized by high-risk HPVs are compared with those used by other DNA viruses that exhibit similarities and distinct differences.

{"title":"How human papillomavirus (HPV) targets DNA repair pathways for viral replication: from guardian to accomplice.","authors":"Arushi Vats, Laimonis Laimins","doi":"10.1128/mmbr.00153-23","DOIUrl":"https://doi.org/10.1128/mmbr.00153-23","url":null,"abstract":"<p><p>SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles. HPVs activate key DDR pathways such as ATM, ATR, and FA, which are critical for maintaining genomic integrity but are often dysregulated in cancers. Importantly, these DDR pathways are essential for HPV replication in undifferentiated cells and amplification upon differentiation. The ability to modulate these DDR pathways not only enables HPV persistence but also contributes to cellular transformation. In this review, we discuss the recent advances in understanding the mechanisms by which HPV manipulates the host DDR pathways and how these depend upon enhanced topoisomerase activity and R-loop formation. Furthermore, the strategies to manipulate DDR pathways utilized by high-risk HPVs are compared with those used by other DNA viruses that exhibit similarities and distinct differences.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0015323"},"PeriodicalIF":8.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resolving spatiotemporal dynamics in bacterial multicellular populations: approaches and challenges.
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-01-24 DOI: 10.1128/mmbr.00138-24
Suyen Solange Espinoza Miranda, Gorkhmaz Abbaszade, Wolfgang R Hess, Knut Drescher, Antoine-Emmanuel Saliba, Vasily Zaburdaev, Liraz Chai, Klaus Dreisewerd, Alexander Grünberger, Christian Westendorf, Susann Müller, Thorsten Mascher

SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole. During colony differentiation, an almost infinite number of ecological and physiological population-forming forces are at work, creating complex, intricate colony structures with divergent functions. Understanding the assembly and dynamics of such populations requires resolving individual cells or cell groups within such macroscopic structures. Addressing how each cell contributes to the collective action requires pushing the resolution boundaries of key technologies that will be presented in this review. In particular, single-cell techniques provide powerful tools for studying bacterial multicellularity with unprecedented spatial and temporal resolution. These advancements include novel microscopic techniques, mass spectrometry imaging, flow cytometry, spatial transcriptomics, single-bacteria RNA sequencing, and the integration of spatiotemporal transcriptomics with microscopy, alongside advanced microfluidic cultivation systems. This review encourages exploring the synergistic potential of the new technologies in the study of bacterial multicellularity, with a particular focus on individuals in differentiated bacterial biofilms (colonies). It highlights how resolving population structures at the single-cell level and understanding their respective functions can elucidate the overarching functions of bacterial multicellular populations.

{"title":"Resolving spatiotemporal dynamics in bacterial multicellular populations: approaches and challenges.","authors":"Suyen Solange Espinoza Miranda, Gorkhmaz Abbaszade, Wolfgang R Hess, Knut Drescher, Antoine-Emmanuel Saliba, Vasily Zaburdaev, Liraz Chai, Klaus Dreisewerd, Alexander Grünberger, Christian Westendorf, Susann Müller, Thorsten Mascher","doi":"10.1128/mmbr.00138-24","DOIUrl":"https://doi.org/10.1128/mmbr.00138-24","url":null,"abstract":"<p><p>SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole. During colony differentiation, an almost infinite number of ecological and physiological population-forming forces are at work, creating complex, intricate colony structures with divergent functions. Understanding the assembly and dynamics of such populations requires resolving individual cells or cell groups within such macroscopic structures. Addressing how each cell contributes to the collective action requires pushing the resolution boundaries of key technologies that will be presented in this review. In particular, single-cell techniques provide powerful tools for studying bacterial multicellularity with unprecedented spatial and temporal resolution. These advancements include novel microscopic techniques, mass spectrometry imaging, flow cytometry, spatial transcriptomics, single-bacteria RNA sequencing, and the integration of spatiotemporal transcriptomics with microscopy, alongside advanced microfluidic cultivation systems. This review encourages exploring the synergistic potential of the new technologies in the study of bacterial multicellularity, with a particular focus on individuals in differentiated bacterial biofilms (colonies). It highlights how resolving population structures at the single-cell level and understanding their respective functions can elucidate the overarching functions of bacterial multicellular populations.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0013824"},"PeriodicalIF":8.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vesicular mechanisms of drug resistance in apicomplexan parasites.
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-01-24 DOI: 10.1128/mmbr.00010-24
Kasturi Haldar, Souvik Bhattacharjee

SUMMARYVesicular mechanisms of drug resistance are known to exist across prokaryotes and eukaryotes. Vesicles are sacs that form when a lipid bilayer 'bends' to engulf and isolate contents from the cytoplasm or extracellular environment. They have a wide range of functions, including vehicles of communication within and across cells, trafficking of protein intermediates to their rightful organellar destinations, and carriers of substrates destined for autophagy. This review will provide an in-depth understanding of vesicular mechanisms of apicomplexan parasites, Plasmodium and Toxoplasma (that respectively cause malaria and toxoplasmosis). It will integrate mechanistic and evolutionarily insights gained from these and other pathogenic eukaryotes to develop a new model for plasmodial resistance to artemisinins, a class of drugs that have been the backbone of modern campaigns to eliminate malaria worldwide. We also discuss extracellular vesicles that present major vesicular mechanisms of drug resistance in parasite protozoa (that apicomplexans are part of). Finally, we provide a broader context of clinical drug resistance mechanisms of Plasmodium, Toxoplasma, as well as Cryptosporidium and Babesia, that are prominent members of the phyla, causative agents of cryptosporidiosis and babesiosis and significant for human and animal health.

{"title":"Vesicular mechanisms of drug resistance in apicomplexan parasites.","authors":"Kasturi Haldar, Souvik Bhattacharjee","doi":"10.1128/mmbr.00010-24","DOIUrl":"https://doi.org/10.1128/mmbr.00010-24","url":null,"abstract":"<p><p><b>SUMMARY</b>Vesicular mechanisms of drug resistance are known to exist across prokaryotes and eukaryotes. Vesicles are sacs that form when a lipid bilayer 'bends' to engulf and isolate contents from the cytoplasm or extracellular environment. They have a wide range of functions, including vehicles of communication within and across cells, trafficking of protein intermediates to their rightful organellar destinations, and carriers of substrates destined for autophagy. This review will provide an in-depth understanding of vesicular mechanisms of apicomplexan parasites, Plasmodium and Toxoplasma (that respectively cause malaria and toxoplasmosis). It will integrate mechanistic and evolutionarily insights gained from these and other pathogenic eukaryotes to develop a new model for plasmodial resistance to artemisinins, a class of drugs that have been the backbone of modern campaigns to eliminate malaria worldwide. We also discuss extracellular vesicles that present major vesicular mechanisms of drug resistance in parasite protozoa (that apicomplexans are part of). Finally, we provide a broader context of clinical drug resistance mechanisms of Plasmodium, Toxoplasma, as well as Cryptosporidium and Babesia, that are prominent members of the phyla, causative agents of cryptosporidiosis and babesiosis and significant for human and animal health.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0001024"},"PeriodicalIF":8.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143033546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple sclerosis and infection: history, EBV, and the search for mechanism. 多发性硬化症和感染:历史、EBV和机制的研究。
IF 8 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-01-16 DOI: 10.1128/mmbr.00119-23
Elliott D SoRelle, Micah A Luftig

SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.

长期以来,感染一直被假设为多发性硬化症(MS)的病因,最近的证据表明,eb病毒(EBV)是MS的触发因素,这是明确而令人信服的。这种清晰度与尚不确定的病毒机制及其与MS神经炎症和脱髓鞘的关系形成鲜明对比。只要这种差异持续存在,它将激励病毒学家、分子生物学家、免疫学家和临床医生确定EBV如何增强MS的发病,以及可能的疾病的慢性活动和进展。这些努力应该利用自MS斑块首次临床描述以来近两个世纪以来进行的各种基础和临床研究。确定EBV对多发性硬化症复杂和多因素病理的贡献也需要合适的实验模型和技术。这些努力将扩大我们对病毒驱动的神经炎症的理解,特别是为MS管理和最终预防ebv靶向治疗的发展提供信息。
{"title":"Multiple sclerosis and infection: history, EBV, and the search for mechanism.","authors":"Elliott D SoRelle, Micah A Luftig","doi":"10.1128/mmbr.00119-23","DOIUrl":"10.1128/mmbr.00119-23","url":null,"abstract":"<p><p>SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0011923"},"PeriodicalIF":8.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microbiology and Molecular Biology Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1