Reversed I1Cu4 single-atom sites for superior neutral ammonia electrosynthesis with nitrate.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-09-10 Epub Date: 2024-09-03 DOI:10.1073/pnas.2405236121
Bing Zhou, Yawen Tong, Yancai Yao, Weixing Zhang, Guangming Zhan, Qian Zheng, Wei Hou, Xiang-Kui Gu, Lizhi Zhang
{"title":"Reversed I<sub>1</sub>Cu<sub>4</sub> single-atom sites for superior neutral ammonia electrosynthesis with nitrate.","authors":"Bing Zhou, Yawen Tong, Yancai Yao, Weixing Zhang, Guangming Zhan, Qian Zheng, Wei Hou, Xiang-Kui Gu, Lizhi Zhang","doi":"10.1073/pnas.2405236121","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical ammonia (NH<sub>3</sub>) synthesis from nitrate reduction (NITRR) offers an appealing solution for addressing environmental concerns and the energy crisis. However, most of the developed electrocatalysts reduce NO<sub>3</sub><sup>-</sup> to NH<sub>3</sub> via a hydrogen (H*)-mediated reduction mechanism, which suffers from undesired H*-H* dimerization to H<sub>2</sub>, resulting in unsatisfactory NH<sub>3</sub> yields. Herein, we demonstrate that reversed I<sub>1</sub>Cu<sub>4</sub> single-atom sites, prepared by anchoring iodine single atoms on the Cu surface, realized superior NITRR with a superior ammonia yield rate of 4.36 mg h<sup>-1</sup> cm<sup>-2</sup> and a Faradaic efficiency of 98.5% under neutral conditions via a proton-coupled electron transfer (PCET) mechanism, far beyond those of traditional Cu sites (NH<sub>3</sub> yield rate of 0.082 mg h<sup>-1</sup> cm<sup>-2</sup> and Faradaic efficiency of 36.5%) and most of H*-mediated NITRR electrocatalysts. Theoretical calculations revealed that I single atoms can regulate the local electronic structures of adjacent Cu sites in favor of stronger O-end-bidentate NO<sub>3</sub><sup>-</sup> adsorption with dual electron transfer channels and suppress the H* formation from the H<sub>2</sub>O dissociation, thus switching the NITRR mechanism from H*-mediated reduction to PCET. By integrating the monolithic I<sub>1</sub>Cu<sub>4</sub> single-atom electrode into a flow-through device for continuous NITRR and in situ ammonia recovery, an industrial-level current density of 1 A cm<sup>-2</sup> was achieved along with a NH<sub>3</sub> yield rate of 69.4 mg h<sup>-1</sup> cm<sup>-2</sup>. This study offers reversed single-atom sites for electrochemical ammonia synthesis with nitrate wastewater and sheds light on the importance of switching catalytic mechanisms in improving the performance of electrochemical reactions.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2405236121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical ammonia (NH3) synthesis from nitrate reduction (NITRR) offers an appealing solution for addressing environmental concerns and the energy crisis. However, most of the developed electrocatalysts reduce NO3- to NH3 via a hydrogen (H*)-mediated reduction mechanism, which suffers from undesired H*-H* dimerization to H2, resulting in unsatisfactory NH3 yields. Herein, we demonstrate that reversed I1Cu4 single-atom sites, prepared by anchoring iodine single atoms on the Cu surface, realized superior NITRR with a superior ammonia yield rate of 4.36 mg h-1 cm-2 and a Faradaic efficiency of 98.5% under neutral conditions via a proton-coupled electron transfer (PCET) mechanism, far beyond those of traditional Cu sites (NH3 yield rate of 0.082 mg h-1 cm-2 and Faradaic efficiency of 36.5%) and most of H*-mediated NITRR electrocatalysts. Theoretical calculations revealed that I single atoms can regulate the local electronic structures of adjacent Cu sites in favor of stronger O-end-bidentate NO3- adsorption with dual electron transfer channels and suppress the H* formation from the H2O dissociation, thus switching the NITRR mechanism from H*-mediated reduction to PCET. By integrating the monolithic I1Cu4 single-atom electrode into a flow-through device for continuous NITRR and in situ ammonia recovery, an industrial-level current density of 1 A cm-2 was achieved along with a NH3 yield rate of 69.4 mg h-1 cm-2. This study offers reversed single-atom sites for electrochemical ammonia synthesis with nitrate wastewater and sheds light on the importance of switching catalytic mechanisms in improving the performance of electrochemical reactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反向 I1Cu4 单原子位点与硝酸盐进行卓越的中性氨电合成。
电化学硝酸盐还原法合成氨(NH3)(NITRR)为解决环境问题和能源危机提供了一种极具吸引力的解决方案。然而,大多数已开发的电催化剂都是通过氢(H*)介导的还原机制将 NO3 还原成 NH3,而这种还原机制存在 H*-H* 二聚为 H2 的问题,导致 NH3 产率不尽人意。在此,我们证明了通过在铜表面锚定碘单个原子而制备的反向 I1Cu4 单原子位点实现了卓越的 NITRR,在中性条件下,通过质子和氢原子的作用,氨的产率达到 4.36 mg h-1 cm-2,法拉第效率达到 98.5%。在中性条件下,通过质子耦合电子传递(PCET)机制,实现了卓越的 NITRR,氨气产率达到 4.36 毫克/小时-1 厘米-2,法拉第效率达到 98.5%,远远超过了传统的 Cu 位点(NH3 产率为 0.082 毫克/小时-1 厘米-2,法拉第效率为 36.5%)和大多数 H* 介导的 NITRR 电催化剂。理论计算显示,I单原子可以调节相邻Cu位点的局部电子结构,使其有利于更强的O端与NO3-结合的双电子传递通道吸附,并抑制H2O解离产生的H*,从而将NITRR机制从H*介导的还原转换为PCET。通过将单片 I1Cu4 单原子电极集成到用于连续 NITRR 和原位氨回收的流通装置中,实现了 1 A cm-2 的工业级电流密度和 69.4 mg h-1 cm-2 的 NH3 产率。这项研究为利用硝酸盐废水进行电化学氨合成提供了反向单原子位点,并揭示了转换催化机制对提高电化学反应性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
William B. Wood: Pioneering scientist and educator (1938 to 2024). Collaboration can preserve the integrity of gold standard carbon data from forest inventories. Mechanical confinement prevents ectopic platelet release. Toward a more credible assessment of the credibility of science by many-analyst studies. Wildlife trade data capture: National policy is foundational to science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1