Tip extension and simultaneous multiple fission in a filamentous bacterium.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-09-10 Epub Date: 2024-09-03 DOI:10.1073/pnas.2408654121
Scott Chimileski, Gary G Borisy, Floyd E Dewhirst, Jessica L Mark Welch
{"title":"Tip extension and simultaneous multiple fission in a filamentous bacterium.","authors":"Scott Chimileski, Gary G Borisy, Floyd E Dewhirst, Jessica L Mark Welch","doi":"10.1073/pnas.2408654121","DOIUrl":null,"url":null,"abstract":"<p><p>Organisms display an immense variety of shapes, sizes, and reproductive strategies. At microscopic scales, bacterial cell morphology and growth dynamics are adaptive traits that influence the spatial organization of microbial communities. In one such community-the human dental plaque biofilm-a network of filamentous <i>Corynebacterium matruchotii</i> cells forms the core of bacterial consortia known as hedgehogs, but the processes that generate these structures are unclear. Here, using live-cell time-lapse microscopy and fluorescent D-amino acids to track peptidoglycan biosynthesis, we report an extraordinary example of simultaneous multiple division within the domain <i>Bacteria</i>. We show that <i>C. matruchotii</i> cells elongate at one pole through tip extension, similar to the growth strategy of soil-dwelling <i>Streptomyces</i> bacteria. Filaments elongate rapidly, at rates more than five times greater than other closely related bacterial species. Following elongation, many septa form simultaneously, and each cell divides into 3 to 14 daughter cells, depending on the length of the mother filament. The daughter cells then nucleate outgrowth of new thinner vegetative filaments, generating the classic \"whip handle\" morphology of this taxon. Our results expand the known diversity of bacterial cell cycles and help explain how this filamentous bacterium can compete for space, access nutrients, and form important interspecies interactions within dental plaque.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2408654121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Organisms display an immense variety of shapes, sizes, and reproductive strategies. At microscopic scales, bacterial cell morphology and growth dynamics are adaptive traits that influence the spatial organization of microbial communities. In one such community-the human dental plaque biofilm-a network of filamentous Corynebacterium matruchotii cells forms the core of bacterial consortia known as hedgehogs, but the processes that generate these structures are unclear. Here, using live-cell time-lapse microscopy and fluorescent D-amino acids to track peptidoglycan biosynthesis, we report an extraordinary example of simultaneous multiple division within the domain Bacteria. We show that C. matruchotii cells elongate at one pole through tip extension, similar to the growth strategy of soil-dwelling Streptomyces bacteria. Filaments elongate rapidly, at rates more than five times greater than other closely related bacterial species. Following elongation, many septa form simultaneously, and each cell divides into 3 to 14 daughter cells, depending on the length of the mother filament. The daughter cells then nucleate outgrowth of new thinner vegetative filaments, generating the classic "whip handle" morphology of this taxon. Our results expand the known diversity of bacterial cell cycles and help explain how this filamentous bacterium can compete for space, access nutrients, and form important interspecies interactions within dental plaque.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丝状细菌的尖端延伸和同时多重裂变
生物的形状、大小和繁殖策略千差万别。在微观尺度上,细菌细胞的形态和生长动力学是影响微生物群落空间组织的适应性特征。在这样一个群落--人类牙菌斑生物膜--中,丝状棒状杆菌(Corynebacterium matruchotii)细胞网络构成了被称为刺猬的细菌联合体的核心,但产生这些结构的过程尚不清楚。在这里,我们利用活细胞延时显微镜和荧光 D-氨基酸来跟踪肽聚糖的生物合成,报告了一个在细菌域内同时进行多重分裂的非凡实例。我们发现,C. matruchotii 细胞通过顶端延伸在一极伸长,这与生活在土壤中的链霉菌的生长策略类似。细丝的伸长速度很快,是其他近缘细菌的五倍以上。伸长后,许多隔膜同时形成,每个细胞分裂成 3 到 14 个子细胞(取决于母丝的长度)。然后,子细胞核长出新的较细的无性菌丝,形成该类群的经典 "鞭柄 "形态。我们的研究结果拓展了已知细菌细胞周期的多样性,有助于解释这种丝状细菌如何在牙菌斑内争夺空间、获取营养并形成重要的种间相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
William B. Wood: Pioneering scientist and educator (1938 to 2024). Collaboration can preserve the integrity of gold standard carbon data from forest inventories. Mechanical confinement prevents ectopic platelet release. Toward a more credible assessment of the credibility of science by many-analyst studies. Wildlife trade data capture: National policy is foundational to science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1