Machine learning of metabolite-protein interactions from model-derived metabolic phenotypes.

IF 4 Q1 GENETICS & HEREDITY NAR Genomics and Bioinformatics Pub Date : 2024-09-03 eCollection Date: 2024-09-01 DOI:10.1093/nargab/lqae114
Mahdis Habibpour, Zahra Razaghi-Moghadam, Zoran Nikoloski
{"title":"Machine learning of metabolite-protein interactions from model-derived metabolic phenotypes.","authors":"Mahdis Habibpour, Zahra Razaghi-Moghadam, Zoran Nikoloski","doi":"10.1093/nargab/lqae114","DOIUrl":null,"url":null,"abstract":"<p><p>Unraveling metabolite-protein interactions is key to identifying the mechanisms by which metabolism affects the function of other cellular layers. Despite extensive experimental and computational efforts to identify the regulatory roles of metabolites in interaction with proteins, it remains challenging to achieve a genome-scale coverage of these interactions. Here, we leverage established gold standards for metabolite-protein interactions to train supervised classifiers using features derived from genome-scale metabolic models and matched data on protein abundance and reaction fluxes to distinguish interacting from non-interacting pairs. Through a comprehensive comparative study, we explore the impact of different features and assess the effect of gold standards for non-interacting pairs on the performance of the classifiers. Using data sets from <i>Escherichia coli</i> and <i>Saccharomyces cerevisiae</i>, we demonstrate that the features constructed by integrating fluxomic and proteomic data with metabolic phenotypes predicted from genome-scale metabolic models can be effectively used to train classifiers, accurately predicting metabolite-protein interactions in the context of metabolism. Our results reveal that the high performance of classifiers trained on these features is unaffected by the method used to generate gold standards for non-interacting pairs. Overall, our study introduces valuable features that improve the performance of identifying metabolite-protein interactions in the context of metabolism.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369697/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Unraveling metabolite-protein interactions is key to identifying the mechanisms by which metabolism affects the function of other cellular layers. Despite extensive experimental and computational efforts to identify the regulatory roles of metabolites in interaction with proteins, it remains challenging to achieve a genome-scale coverage of these interactions. Here, we leverage established gold standards for metabolite-protein interactions to train supervised classifiers using features derived from genome-scale metabolic models and matched data on protein abundance and reaction fluxes to distinguish interacting from non-interacting pairs. Through a comprehensive comparative study, we explore the impact of different features and assess the effect of gold standards for non-interacting pairs on the performance of the classifiers. Using data sets from Escherichia coli and Saccharomyces cerevisiae, we demonstrate that the features constructed by integrating fluxomic and proteomic data with metabolic phenotypes predicted from genome-scale metabolic models can be effectively used to train classifiers, accurately predicting metabolite-protein interactions in the context of metabolism. Our results reveal that the high performance of classifiers trained on these features is unaffected by the method used to generate gold standards for non-interacting pairs. Overall, our study introduces valuable features that improve the performance of identifying metabolite-protein interactions in the context of metabolism.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从模型衍生的代谢表型中对代谢物-蛋白质相互作用进行机器学习。
揭示代谢物与蛋白质的相互作用是确定代谢影响其他细胞层功能机制的关键。尽管为确定代谢物与蛋白质相互作用的调控作用进行了大量的实验和计算工作,但要实现这些相互作用的基因组规模覆盖仍具有挑战性。在这里,我们利用已建立的代谢物与蛋白质相互作用的黄金标准来训练有监督的分类器,使用从基因组规模的代谢模型以及蛋白质丰度和反应通量的匹配数据中获得的特征来区分相互作用和非相互作用对。通过全面的比较研究,我们探索了不同特征的影响,并评估了非相互作用对的黄金标准对分类器性能的影响。利用大肠杆菌和酿酒酵母的数据集,我们证明了将通量组和蛋白质组数据与基因组尺度代谢模型预测的代谢表型结合起来所构建的特征可以有效地用于训练分类器,准确预测代谢背景下代谢物与蛋白质的相互作用。我们的研究结果表明,根据这些特征训练的分类器的高性能不受用于生成非相互作用对金标准的方法的影响。总之,我们的研究引入了有价值的特征,提高了在代谢背景下识别代谢物-蛋白质相互作用的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
期刊最新文献
Diverse intrinsic properties shape transcript stability and stabilization in Mycolicibacterium smegmatis. Faster and more accurate assessment of differential transcript expression with Gibbs sampling and edgeR v4. Tumor purity estimated from bulk DNA methylation can be used for adjusting beta values of individual samples to better reflect tumor biology. Intronic RNA secondary structural information captured for the human MYC pre-mRNA. The next-generation sequencing-chess problem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1