Jennifer Eyre , Scott A. Williams , Mark Grabowski , Sandra Winters , Herman Pontzer
{"title":"The effect of bi-iliac breadth on core body temperature","authors":"Jennifer Eyre , Scott A. Williams , Mark Grabowski , Sandra Winters , Herman Pontzer","doi":"10.1016/j.jhevol.2024.103580","DOIUrl":null,"url":null,"abstract":"<div><p>Thermoregulation is argued to be an important factor influencing body breadth in hominins based on the relationship of surface area to body mass first proposed by Bergmann. Selection for a narrow thorax, and thus a narrow pelvis, increases body surface area relative to body mass, which could be beneficial in hot climates if it leads to a decrease in core body temperature. However, the relationship between pelvic breadth and thermoregulation in humans has not been established. Although previous work has shown that bi-iliac breadth is significantly positively associated with latitude in humans, we lack an understanding of whether this association is due to climate-related selection, neutral evolutionary processes, or other selective pressures. A missing piece of the puzzle is whether body breadth at the iliac blades is an important factor in thermoregulation. Here, we examine this in a mixed-sex sample of 28 adult runners who ran for one hour at 3.14 m s<sup>−1</sup> in a variety of climatic conditions while their core body temperatures were measured using internal temperature sensors. The association of maximum core temperature with anthropometric and demographic variables such as age, sex, mass, body fat percentage, and bi-iliac breadth was analyzed using a linear mixed-effect model. Due to the small sample size, the model was also bootstrapped. We found that an increase in absolute bi-iliac breadth was significantly associated with an increase in maximum core temperature. Overall, this preliminary analysis suggests a link between variation in bi-iliac breadth and maximum core body temperature during running, but further investigation is needed.</p></div>","PeriodicalId":54805,"journal":{"name":"Journal of Human Evolution","volume":"195 ","pages":"Article 103580"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Evolution","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047248424000885","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermoregulation is argued to be an important factor influencing body breadth in hominins based on the relationship of surface area to body mass first proposed by Bergmann. Selection for a narrow thorax, and thus a narrow pelvis, increases body surface area relative to body mass, which could be beneficial in hot climates if it leads to a decrease in core body temperature. However, the relationship between pelvic breadth and thermoregulation in humans has not been established. Although previous work has shown that bi-iliac breadth is significantly positively associated with latitude in humans, we lack an understanding of whether this association is due to climate-related selection, neutral evolutionary processes, or other selective pressures. A missing piece of the puzzle is whether body breadth at the iliac blades is an important factor in thermoregulation. Here, we examine this in a mixed-sex sample of 28 adult runners who ran for one hour at 3.14 m s−1 in a variety of climatic conditions while their core body temperatures were measured using internal temperature sensors. The association of maximum core temperature with anthropometric and demographic variables such as age, sex, mass, body fat percentage, and bi-iliac breadth was analyzed using a linear mixed-effect model. Due to the small sample size, the model was also bootstrapped. We found that an increase in absolute bi-iliac breadth was significantly associated with an increase in maximum core temperature. Overall, this preliminary analysis suggests a link between variation in bi-iliac breadth and maximum core body temperature during running, but further investigation is needed.
期刊介绍:
The Journal of Human Evolution concentrates on publishing the highest quality papers covering all aspects of human evolution. The central focus is aimed jointly at paleoanthropological work, covering human and primate fossils, and at comparative studies of living species, including both morphological and molecular evidence. These include descriptions of new discoveries, interpretative analyses of new and previously described material, and assessments of the phylogeny and paleobiology of primate species. Submissions should address issues and questions of broad interest in paleoanthropology.