FS-iTFET: advancing tunnel FET technology with Schottky-inductive source and GAA design

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanoscale Research Letters Pub Date : 2024-09-04 DOI:10.1186/s11671-024-04096-4
Jyi-Tsong Lin, Wei-Heng Tai
{"title":"FS-iTFET: advancing tunnel FET technology with Schottky-inductive source and GAA design","authors":"Jyi-Tsong Lin,&nbsp;Wei-Heng Tai","doi":"10.1186/s11671-024-04096-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a novel Forkshape nanosheet Inductive Tunnel Field-Effect Transistor (FS-iTFET) featuring a Gate-All-Around structure and a full-line tunneling heterojunction channel. The overlapping gate and source contact regions create a strong and uniform electric field in the channel. Furthermore, the metal–semiconductor Schottky junction in the intrinsic source region induces the required carriers without the need for doping. This innovative design achieves both a steeper subthreshold swing (<i>SS</i>) and a higher ON-state current (<i>I</i><sub>ON</sub>). Using calibration-based simulations with Sentaurus TCAD, we compare the performance of three newly designed device structures: the conventional Nanosheet Tunnel Field-Effect Transistor (NS-TFET), the Nanosheet Line-tunneling TFET (NS-LTFET), and the proposed FS-iTFET. Simulation results show that, compared to the traditional NS-TFET, the NS-LTFET with its full line-tunneling structure improves the average subthreshold swing (<i>SS</i><sub>AVG</sub>) by 19.2%. More significantly, the FS-iTFET, utilizing the Schottky-inductive source, further improves the <i>SS</i><sub>AVG</sub> by 49% and achieves a superior <i>I</i><sub>ON</sub>/<i>I</i><sub>OFF</sub> ratio. Additionally, we explore the impact of Trap-Assisted Tunneling on the performance of the three different integrations. The FS-iTFET consistently demonstrates superior performance across various metrics, highlighting its potential in advancing tunnel field-effect transistor technology.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371965/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04096-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a novel Forkshape nanosheet Inductive Tunnel Field-Effect Transistor (FS-iTFET) featuring a Gate-All-Around structure and a full-line tunneling heterojunction channel. The overlapping gate and source contact regions create a strong and uniform electric field in the channel. Furthermore, the metal–semiconductor Schottky junction in the intrinsic source region induces the required carriers without the need for doping. This innovative design achieves both a steeper subthreshold swing (SS) and a higher ON-state current (ION). Using calibration-based simulations with Sentaurus TCAD, we compare the performance of three newly designed device structures: the conventional Nanosheet Tunnel Field-Effect Transistor (NS-TFET), the Nanosheet Line-tunneling TFET (NS-LTFET), and the proposed FS-iTFET. Simulation results show that, compared to the traditional NS-TFET, the NS-LTFET with its full line-tunneling structure improves the average subthreshold swing (SSAVG) by 19.2%. More significantly, the FS-iTFET, utilizing the Schottky-inductive source, further improves the SSAVG by 49% and achieves a superior ION/IOFF ratio. Additionally, we explore the impact of Trap-Assisted Tunneling on the performance of the three different integrations. The FS-iTFET consistently demonstrates superior performance across various metrics, highlighting its potential in advancing tunnel field-effect transistor technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FS-iTFET:采用肖特基电感源和 GAA 设计的先进隧道 FET 技术。
本文介绍了一种新型叉形纳米片电感隧道场效应晶体管(FS-iTFET),它具有 "栅极环绕"(Gate-All-Around)结构和全线隧道异质结沟道。重叠的栅极和源极接触区在沟道中形成了强大而均匀的电场。此外,固有源区的金属半导体肖特基结无需掺杂即可诱导出所需的载流子。这种创新设计实现了更陡的阈下摆动(SS)和更高的导通态电流(ION)。通过使用 Sentaurus TCAD 进行基于校准的仿真,我们比较了三种新设计器件结构的性能:传统的纳米片隧道场效应晶体管 (NS-TFET)、纳米片线隧道 TFET (NS-LTFET) 和拟议的 FS-iTFET。仿真结果表明,与传统的 NS-TFET 相比,采用全线隧道结构的 NS-LTFET 可将平均阈下摆幅 (SSAVG) 提高 19.2%。更重要的是,利用肖特基电感源的 FS-iTFET 进一步将 SSAVG 提高了 49%,并实现了出色的 ION/IOFF 比。此外,我们还探讨了陷波辅助隧道效应对三种不同集成电路性能的影响。FS-iTFET 始终在各种指标上表现出卓越的性能,突显了它在推动隧道场效应晶体管技术发展方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release Integration of silver nanostructures in wireless sensor networks for enhanced biochemical sensing Crystal growth, structural phase transitions and optical gap evolution of FAPb(Br1-xClx)3 hybrid perovskites (FA: formamidinium ion, CH(NH2)2+) Insights into semi-continuous synthesis of iron oxide nanoparticles (IONPs) via thermal decomposition of iron oleate Studies on the electrical and optical conductivity of barium-nickel ferrite nanoparticles doped with Zn
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1