首页 > 最新文献

Nanoscale Research Letters最新文献

英文 中文
Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-14 DOI: 10.1186/s11671-024-04161-y
Bárbara Bernardi, João Otávio Donizette Malafatti, Ailton José Moreira, Andressa Cristina de Almeida Nascimento, Juliana Bruzaca Lima, Lilian Aparecida Fiorini Vermeersch, Elaine Cristina Paris

Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m2 g−1), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h). Zeolites were incorporated into polymeric nanofibers to be a cloxacillin (CLX) carrier in wound treatment, using electrospinning as an efficient synthesis method. The fibers produced showed good mechanical resistance and the incorporation of CLX was proven by assays to inhibit the growth of Staphylococcus aureus bacteria. The controlled release of CLX in different pH conditions, which simulate the wound environment, was carried out for up to 229 h, achieving a released CLX concentration of up to 6.18 ± 0.02 mg L−1. These results prove that obtaining a hybrid fiber (polymer-zeolite) to incorporate drugs to be released in a controlled manner was successfully achieved. The bactericidal activity of this material shows that its use for measured applications could be an alternative to conventional methods.

Graphical abstract

{"title":"Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release","authors":"Bárbara Bernardi,&nbsp;João Otávio Donizette Malafatti,&nbsp;Ailton José Moreira,&nbsp;Andressa Cristina de Almeida Nascimento,&nbsp;Juliana Bruzaca Lima,&nbsp;Lilian Aparecida Fiorini Vermeersch,&nbsp;Elaine Cristina Paris","doi":"10.1186/s11671-024-04161-y","DOIUrl":"10.1186/s11671-024-04161-y","url":null,"abstract":"<div><p>Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m<sup>2</sup> g<sup>−1</sup>), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h). Zeolites were incorporated into polymeric nanofibers to be a cloxacillin (CLX) carrier in wound treatment, using electrospinning as an efficient synthesis method. The fibers produced showed good mechanical resistance and the incorporation of CLX was proven by assays to inhibit the growth of <i>Staphylococcus aureus</i> bacteria. The controlled release of CLX in different pH conditions, which simulate the wound environment, was carried out for up to 229 h, achieving a released CLX concentration of up to 6.18 ± 0.02 mg L<sup>−1</sup>. These results prove that obtaining a hybrid fiber (polymer-zeolite) to incorporate drugs to be released in a controlled manner was successfully achieved. The bactericidal activity of this material shows that its use for measured applications could be an alternative to conventional methods.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04161-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of silver nanostructures in wireless sensor networks for enhanced biochemical sensing 在无线传感器网络中集成银纳米结构,增强生化传感。
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.1186/s11671-024-04159-6
M. Sahaya Sheela, S. Kumarganesh, Binay Kumar Pandey, Mesfin Esayas Lelisho

Integrating noble metal nanostructures, specifically silver nanoparticles, into sensor designs has proven to enhance sensor performance across key metrics, including response time, stability, and sensitivity. However, a critical gap remains in understanding the unique contributions of various synthesis parameters on these enhancements. This study addresses this gap by examining how factors such as temperature, growth time, and choice of capping agents influence nanostructure shape and size, optimizing sensor performance for diverse conditions. Using silver nitrate and sodium borohydride, silver seed particles were created, followed by controlled growth in a solution containing additional silver ions. The size and morphology of the resulting nanostructures were regulated to achieve optimal properties for biochemical sensing in wireless sensor networks. Results demonstrated that embedding these nanostructures in Polyvinyl Alcohol (PVA) matrices led to superior stability, maintaining 93% effectiveness over 30 days compared to 70% in Polyethylene Glycol (PEG). Performance metrics revealed significant improvements: reduced response times (1.2 ms vs. 1.5 ms at zero analyte concentration) and faster responses at higher analyte levels (0.2 ms). These outcomes confirm that higher synthesis temperatures and precise shape control contribute to larger, more stable nanostructures.The enhanced stability and responsiveness underscore the potential of noble metal nanostructures for scalable and durable sensor applications, offering a significant advancement over current methods.

事实证明,将贵金属纳米结构(特别是银纳米颗粒)集成到传感器设计中可提高传感器的性能,包括响应时间、稳定性和灵敏度等关键指标。然而,在了解各种合成参数对这些增强作用的独特贡献方面仍存在重大差距。本研究通过考察温度、生长时间和封端剂的选择等因素如何影响纳米结构的形状和尺寸,从而优化传感器在不同条件下的性能,填补了这一空白。利用硝酸银和硼氢化钠制造出银种子颗粒,然后在含有额外银离子的溶液中进行受控生长。对由此产生的纳米结构的大小和形态进行了调节,以实现无线传感器网络中生化传感的最佳性能。结果表明,将这些纳米结构嵌入聚乙烯醇(PVA)基质中可获得更高的稳定性,30 天内可保持 93% 的有效性,而在聚乙二醇(PEG)中仅能保持 70% 的有效性。性能指标显示出明显的改进:响应时间缩短(1.2 毫秒,分析物浓度为零时为 1.5 毫秒),分析物浓度较高时响应速度更快(0.2 毫秒)。这些结果证实,更高的合成温度和精确的形状控制有助于形成更大、更稳定的纳米结构。稳定性和响应性的增强凸显了贵金属纳米结构在可扩展和耐用传感器应用方面的潜力,与当前的方法相比是一大进步。
{"title":"Integration of silver nanostructures in wireless sensor networks for enhanced biochemical sensing","authors":"M. Sahaya Sheela,&nbsp;S. Kumarganesh,&nbsp;Binay Kumar Pandey,&nbsp;Mesfin Esayas Lelisho","doi":"10.1186/s11671-024-04159-6","DOIUrl":"10.1186/s11671-024-04159-6","url":null,"abstract":"<div><p>Integrating noble metal nanostructures, specifically silver nanoparticles, into sensor designs has proven to enhance sensor performance across key metrics, including response time, stability, and sensitivity. However, a critical gap remains in understanding the unique contributions of various synthesis parameters on these enhancements. This study addresses this gap by examining how factors such as temperature, growth time, and choice of capping agents influence nanostructure shape and size, optimizing sensor performance for diverse conditions. Using silver nitrate and sodium borohydride, silver seed particles were created, followed by controlled growth in a solution containing additional silver ions. The size and morphology of the resulting nanostructures were regulated to achieve optimal properties for biochemical sensing in wireless sensor networks. Results demonstrated that embedding these nanostructures in Polyvinyl Alcohol (PVA) matrices led to superior stability, maintaining 93% effectiveness over 30 days compared to 70% in Polyethylene Glycol (PEG). Performance metrics revealed significant improvements: reduced response times (1.2 ms vs. 1.5 ms at zero analyte concentration) and faster responses at higher analyte levels (0.2 ms). These outcomes confirm that higher synthesis temperatures and precise shape control contribute to larger, more stable nanostructures.The enhanced stability and responsiveness underscore the potential of noble metal nanostructures for scalable and durable sensor applications, offering a significant advancement over current methods.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04159-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal growth, structural phase transitions and optical gap evolution of FAPb(Br1-xClx)3 hybrid perovskites (FA: formamidinium ion, CH(NH2)2+) FAPb(Br1-xClx)3混合包晶的晶体生长、结构相变和光隙演化(FA:甲脒离子,CH(NH2)2+)。
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.1186/s11671-024-04179-2
Carlos A. López, Oscar Fabelo, Carmen Abia, María T. Fernández-Diaz, José A. Alonso

Chemically tuned organic–inorganic hybrid halide perovskites based on bromide and chloride anions CH(NH2)2Pb(Br1−xClx)3 (CH(NH2)2+: formamidinium ion, FA) have been crystallized and investigated by neutron powder diffraction (NPD), single crystal X-ray diffraction (SCXRD), scanning electron microscopy (SEM) and UV–vis spectroscopy. FAPbBr3 and FAPbCl3 experience successive phase transitions upon cooling, lowering the symmetry from cubic to orthorhombic phases; however, these transitions are not observed for the mixed halide phases, probably due to compositional disorder. The band-gap engineering brought about by the chemical doping of FAPb (Br1-xClx)3 perovskites (x = 0.0, 0.33, 0.5, 0.66 and 1.0) can be controllably tuned: the gap progressively increases with the concentration of Cl ions from 2.17 to 2.91 eV at room temperature, presenting a nonlinear behavior. This study provides an improved understanding of the structural and optical properties of these appealing hybrid perovskites.

{"title":"Crystal growth, structural phase transitions and optical gap evolution of FAPb(Br1-xClx)3 hybrid perovskites (FA: formamidinium ion, CH(NH2)2+)","authors":"Carlos A. López,&nbsp;Oscar Fabelo,&nbsp;Carmen Abia,&nbsp;María T. Fernández-Diaz,&nbsp;José A. Alonso","doi":"10.1186/s11671-024-04179-2","DOIUrl":"10.1186/s11671-024-04179-2","url":null,"abstract":"<div><p>Chemically tuned organic–inorganic hybrid halide perovskites based on bromide and chloride anions CH(NH<sub>2</sub>)<sub>2</sub>Pb(Br<sub>1−<i>x</i></sub>Cl<sub><i>x</i></sub>)<sub>3</sub> (CH(NH<sub>2</sub>)<sub>2</sub><sup>+</sup>: formamidinium ion, FA) have been crystallized and investigated by neutron powder diffraction (NPD), single crystal X-ray diffraction (SCXRD), scanning electron microscopy (SEM) and UV–vis spectroscopy. FAPbBr<sub>3</sub> and FAPbCl<sub>3</sub> experience successive phase transitions upon cooling, lowering the symmetry from cubic to orthorhombic phases; however, these transitions are not observed for the mixed halide phases, probably due to compositional disorder. The band-gap engineering brought about by the chemical doping of FAPb (Br<sub>1-<i>x</i></sub>Cl<sub><i>x</i></sub>)<sub>3</sub> perovskites (x = 0.0, 0.33, 0.5, 0.66 and 1.0) can be controllably tuned: the gap progressively increases with the concentration of Cl<sup>−</sup> ions from 2.17 to 2.91 eV at room temperature, presenting a nonlinear behavior. This study provides an improved understanding of the structural and optical properties of these appealing hybrid perovskites.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04179-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into semi-continuous synthesis of iron oxide nanoparticles (IONPs) via thermal decomposition of iron oleate
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-07 DOI: 10.1186/s11671-024-04167-6
Egon Götz Höfgen, Sulalit Bandyopadhyay

The increasing demand for magnetic iron oxide nanoparticles (IONPs) in biomedicine necessitates efficient and scalable production methods. Thermal decomposition offers excellent tailoring of the particle properties but its discontinuous batch-operation is restricting scale-up and industrial application. To overcome these challenges, several studies have demonstrated semi-continuous thermal decomposition by slowly injecting the precursor, though only half of them produce magnetite IONPs and even fewer use iron oleate precursors. The available studies are limited, often focusing on single synthesis variables and a comprehensive mapping of the physicochemical properties to reaction conditions is missing. Here we present our investigation of semi-continuous thermal decomposition of iron oleate as a route for the synthesis of magnetic IONPs. We achieved the semi-continuous synthesis of spherical IONPs with properties matching those obtained via the conventional heat-up method. We explored the the effect of multiple synthesis variables, namely addition rate, dwell time, iron oleate amount, oleic acid amount, temperature and consistently report magnetic saturation of our samples. We found that the dwell time seemingly has a stronger effect on particle sizes and magnetic saturation than the addition speed, within moderate addition rates, and further are we the first to report the effect of reaction temperature on semi-continuous synthesis. The iron oleate precursor obtained from salt exchange was employed without pretreatment or dilution thereby facilitating a streamlined synthesis process. An oxidative phase transfer was used to mitigate the key challenge of hydrophobicity of oleate-capped IONPs, enabling their potential use in biomedical applications. Our work advances the understanding of of synthesis-property relationships of IONPs by demonstrating the translation of established synthesis protocols into more efficient and scalable processes through which it provides insights for developing and optimizing future production protocols for various applications.

{"title":"Insights into semi-continuous synthesis of iron oxide nanoparticles (IONPs) via thermal decomposition of iron oleate","authors":"Egon Götz Höfgen,&nbsp;Sulalit Bandyopadhyay","doi":"10.1186/s11671-024-04167-6","DOIUrl":"10.1186/s11671-024-04167-6","url":null,"abstract":"<p>The increasing demand for magnetic iron oxide nanoparticles (IONPs) in biomedicine necessitates efficient and scalable production methods. Thermal decomposition offers excellent tailoring of the particle properties but its discontinuous batch-operation is restricting scale-up and industrial application. To overcome these challenges, several studies have demonstrated semi-continuous thermal decomposition by slowly injecting the precursor, though only half of them produce magnetite IONPs and even fewer use iron oleate precursors. The available studies are limited, often focusing on single synthesis variables and a comprehensive mapping of the physicochemical properties to reaction conditions is missing. Here we present our investigation of semi-continuous thermal decomposition of iron oleate as a route for the synthesis of magnetic IONPs. We achieved the semi-continuous synthesis of spherical IONPs with properties matching those obtained via the conventional heat-up method. We explored the the effect of multiple synthesis variables, namely addition rate, dwell time, iron oleate amount, oleic acid amount, temperature and consistently report magnetic saturation of our samples. We found that the dwell time seemingly has a stronger effect on particle sizes and magnetic saturation than the addition speed, within moderate addition rates, and further are we the first to report the effect of reaction temperature on semi-continuous synthesis. The iron oleate precursor obtained from salt exchange was employed without pretreatment or dilution thereby facilitating a streamlined synthesis process. An oxidative phase transfer was used to mitigate the key challenge of hydrophobicity of oleate-capped IONPs, enabling their potential use in biomedical applications. Our work advances the understanding of of synthesis-property relationships of IONPs by demonstrating the translation of established synthesis protocols into more efficient and scalable processes through which it provides insights for developing and optimizing future production protocols for various applications.</p>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04167-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studies on the electrical and optical conductivity of barium-nickel ferrite nanoparticles doped with Zn
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-06 DOI: 10.1186/s11671-024-04180-9
Sadiq H. Khoreem, A. H. AL-Hammadi

The study highlights the significant effects of Zn ions concentration on the optical properties of BaNi2-xZnxFe16O27 ferrites, emphasizing the tunability of the band gap through Zn doping and explores their potential to enhance their optical properties. The barium-nickel ferrite powder, with the composition BaNi2−xZnxFe16O27, was synthesized using the ceramic method. The effects of Zn doping were analyzed using X-ray diffraction (XRD) and UV‒visible (UV–Vis) spectroscopy. XRD confirmed a pure single-phase W-type hexagonal structure, with an increase in both grain size and lattice constant proportional to the Zn content. The optical properties were assessed through UV‒visible spectroscopy, revealing an increaseing of the band gap with increasing Zn concentration, confirming material’s semiconducting behavior.All optical constants, exhibited consistent variation with increasing Zn substitution.. Additionally, both electrical and optical conductivities increased with rising photon energy, while the conductivity peak decreased with higher Zn content. The electric susceptibility was found to decrease as Zn concentration increased. The results indicate that Zn doping leads to significant changes in lattice parameters, crystallite size, and bandgap energy, suggesting potential applications in optoelectronics, photonics devices, and energy storage."

{"title":"Studies on the electrical and optical conductivity of barium-nickel ferrite nanoparticles doped with Zn","authors":"Sadiq H. Khoreem,&nbsp;A. H. AL-Hammadi","doi":"10.1186/s11671-024-04180-9","DOIUrl":"10.1186/s11671-024-04180-9","url":null,"abstract":"<div><p>The study highlights the significant effects of Zn ions concentration on the optical properties of BaNi<sub>2-x</sub>Zn<sub>x</sub>Fe<sub>16</sub>O<sub>27</sub> ferrites, emphasizing the tunability of the band gap through Zn doping and explores their potential to enhance their optical properties. The barium-nickel ferrite powder, with the composition BaNi<sub>2−x</sub>Zn<sub>x</sub>Fe<sub>16</sub>O<sub>27</sub>, was synthesized using the ceramic method. The effects of Zn doping were analyzed using X-ray diffraction (XRD) and UV‒visible (UV–Vis) spectroscopy. XRD confirmed a pure single-phase W-type hexagonal structure, with an increase in both grain size and lattice constant proportional to the Zn content. The optical properties were assessed through UV‒visible spectroscopy, revealing an increaseing of the band gap with increasing Zn concentration, confirming material’s semiconducting behavior.All optical constants, exhibited consistent variation with increasing Zn substitution.. Additionally, both electrical and optical conductivities increased with rising photon energy, while the conductivity peak decreased with higher Zn content. The electric susceptibility was found to decrease as Zn concentration increased. The results indicate that Zn doping leads to significant changes in lattice parameters, crystallite size, and bandgap energy, suggesting potential applications in optoelectronics, photonics devices, and energy storage.\"</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04180-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Prospects and challenges of nanomaterials in sustainable food preservation and packaging: a review
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-06 DOI: 10.1186/s11671-024-04174-7
Ritesh Pattnaik, Sandeep Kumar Panda, Soumyadeep Biswas, Sayanti De, Subhra Satahrada, Subrat Kumar
{"title":"Correction: Prospects and challenges of nanomaterials in sustainable food preservation and packaging: a review","authors":"Ritesh Pattnaik,&nbsp;Sandeep Kumar Panda,&nbsp;Soumyadeep Biswas,&nbsp;Sayanti De,&nbsp;Subhra Satahrada,&nbsp;Subrat Kumar","doi":"10.1186/s11671-024-04174-7","DOIUrl":"10.1186/s11671-024-04174-7","url":null,"abstract":"","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04174-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Merits photocatalytic activity of rGO/zinc copper ferrite magnetic nanocatalyst for photodegradation of methylene blue (MB) dye
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-04 DOI: 10.1186/s11671-024-04162-x
Osama H. Abuzeyad, Ahmed M. El-Khawaga, Hesham Tantawy, Mohamed Gobara, Mohamed A. Elsayed

The world is now facing a water scarcity crisis due to waste, pollution, and uneven distribution of freshwater resources, which are limited. Thus, the creation of innovative, economical, and effective methods for purifying water is crucial. Here, the photo-assisted degradation of methylene blue (MB) dye under visible light and UV was achieved by using RGO photocatalyst loaded with Zn0.5Cu0.5Fe2O4 in three different loaded 10%, 20%, and 30% called MRGO 10, MRGO 20, and MRGO 30. Furthermore, all prepared samples was characterized by X-ray diffraction (XRD), fourier transformation infrared (FTIR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and Raman analysis. After 40 min, the high photocatalytic efficacy effectively eliminated about 95.2% of the 10 ppm MB using 20 mg of MRGO 20 NPs at pH9 Visible light. From the results, the photocatalytic activity of MRGO 20 reduced to 54.6% after five cycles of methylene blue (MB) dye degradation. The produced samples' observed efficacy in both UV and visible light may encourage continued research into more effective photocatalysts for the filtration of water.

{"title":"Merits photocatalytic activity of rGO/zinc copper ferrite magnetic nanocatalyst for photodegradation of methylene blue (MB) dye","authors":"Osama H. Abuzeyad,&nbsp;Ahmed M. El-Khawaga,&nbsp;Hesham Tantawy,&nbsp;Mohamed Gobara,&nbsp;Mohamed A. Elsayed","doi":"10.1186/s11671-024-04162-x","DOIUrl":"10.1186/s11671-024-04162-x","url":null,"abstract":"<div><p>The world is now facing a water scarcity crisis due to waste, pollution, and uneven distribution of freshwater resources, which are limited. Thus, the creation of innovative, economical, and effective methods for purifying water is crucial. Here, the photo-assisted degradation of methylene blue (MB) dye under visible light and UV was achieved by using RGO photocatalyst loaded with Zn<sub>0.5</sub>Cu<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> in three different loaded 10%, 20%, and 30% called MRGO 10, MRGO 20, and MRGO 30. Furthermore, all prepared samples was characterized by X-ray diffraction (XRD), fourier transformation infrared (FTIR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and Raman analysis. After 40 min, the high photocatalytic efficacy effectively eliminated about 95.2% of the 10 ppm MB using 20 mg of MRGO 20 NPs at pH9 Visible light. From the results, the photocatalytic activity of MRGO 20 reduced to 54.6% after five cycles of methylene blue (MB) dye degradation. The produced samples' observed efficacy in both UV and visible light may encourage continued research into more effective photocatalysts for the filtration of water.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04162-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TiO2–ZnO functionalized low-cost ceramic membranes from coal fly ash for the removal of tetracycline from water under visible light
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-03 DOI: 10.1186/s11671-024-04178-3
Lawrence Sawunyama, Opeyemi A. Oyewo, Seshibe S. Makgato, Mokgadi F. Bopape, Damian C. Onwudiwe

Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO2–ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method. The intrinsic properties of the functionalized membranes were characterized and their chemical and physical properties such as chemical stability, mechanical stability, water absorption, and porosity were established. The shape, crystallinity, thermal characteristics, and functional groups present were also determined using SEM, XRD, TGA, and FTIR studies, respectively. The results showed that the ceramic membrane functionalized with 0.5 g of TiO2–ZnO and sintered at 850 °C exhibited the best thermal, and chemical stability, and possessed the required porosity for ultrafiltration applications. Photocatalytic degradation of tetracycline (TC) as a model pollutant was examined and the optimum efficiency of 77% was achieved within 100 min of visible irradiation using the functionalized membrane. Moreso, the functionalized membrane was found to be stable with 73% degradation efficiency after 5 consecutive cycles of reusability study, showing negligible loss of efficiency. The scale-up of photocatalytic ceramic membranes and their utilization in real industrial applications will confirm their robustness.

Graphical Abstract

{"title":"TiO2–ZnO functionalized low-cost ceramic membranes from coal fly ash for the removal of tetracycline from water under visible light","authors":"Lawrence Sawunyama,&nbsp;Opeyemi A. Oyewo,&nbsp;Seshibe S. Makgato,&nbsp;Mokgadi F. Bopape,&nbsp;Damian C. Onwudiwe","doi":"10.1186/s11671-024-04178-3","DOIUrl":"10.1186/s11671-024-04178-3","url":null,"abstract":"<div><p>Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO<sub>2</sub>–ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method. The intrinsic properties of the functionalized membranes were characterized and their chemical and physical properties such as chemical stability, mechanical stability, water absorption, and porosity were established. The shape, crystallinity, thermal characteristics, and functional groups present were also determined using SEM, XRD, TGA, and FTIR studies, respectively. The results showed that the ceramic membrane functionalized with 0.5 g of TiO<sub>2</sub>–ZnO and sintered at 850 °C exhibited the best thermal, and chemical stability, and possessed the required porosity for ultrafiltration applications. Photocatalytic degradation of tetracycline (TC) as a model pollutant was examined and the optimum efficiency of 77% was achieved within 100 min of visible irradiation using the functionalized membrane. Moreso, the functionalized membrane was found to be stable with 73% degradation efficiency after 5 consecutive cycles of reusability study, showing negligible loss of efficiency. The scale-up of photocatalytic ceramic membranes and their utilization in real industrial applications will confirm their robustness.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04178-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid lipid nanoparticles for increased oral bioavailability of acalabrutinib in chronic lymphocytic leukaemia
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-30 DOI: 10.1186/s11671-024-04157-8
Swagata Sinha, Punna Rao Ravi, Makarand Somvanshi, S. R. Rashmi

Acalabrutinib (ACP) is a first-line treatment for chronic lymphocytic leukemia but suffers from poor and variable oral bioavailability due to its pH-dependent solubility, CYP3A4 metabolism, and P-gp efflux. Thus, the objective of this study was to improve the solubility and dissolution behaviour, in turn enhancing bioavailability, by formulating solid lipid nanoparticles (SLNs). ACP loaded SLNs (ACP-SLNs) were prepared via solvent-free hot emulsification followed by a double sonication process. A combination of glyceryl di-behenate and stearyl palmitate along with Tween 80 was used as the lipid phase to dissolve ACP. A 1% w/v Poloxomer188 solution served as the aqueous phase. The optimized ACP-SLNs were spherical in shape and had particle size of 234.7–257.5 nm, PDI of 0.261–0.320 and loading efficiency of 18.70 ± 1.78%. A typical biphasic release pattern was observed from ACP-SLNs in the in vitro dissolution studies under gastrointestinal and plasma pH conditions (> 90% drug release at pH 4.5 ± 0.2, 6.8 ± 0.2 (representing GIT), and 7.4 ± 0.2 (representing plasma) at 8, 16 and 24 h, respectively). The freeze-dried product was stable when stored at 5 °C for over 6 months. Compared with the bulk drug suspension, the ACP-SLNs suspension resulted in 2.29-fold increase in oral bioavailability and more importantly 2.46-fold increase in the distribution of drug to spleen. Additionally, inhibition of lymph production and flow by administering cycloheximide resulted in 46.01% decrease in the overall absorption of ACP-SLNs, indicating the significance of lymphatic uptake process in the oral absorption of ACP-SLNs.

Graphical Abstract

{"title":"Solid lipid nanoparticles for increased oral bioavailability of acalabrutinib in chronic lymphocytic leukaemia","authors":"Swagata Sinha,&nbsp;Punna Rao Ravi,&nbsp;Makarand Somvanshi,&nbsp;S. R. Rashmi","doi":"10.1186/s11671-024-04157-8","DOIUrl":"10.1186/s11671-024-04157-8","url":null,"abstract":"<div><p>Acalabrutinib (ACP) is a first-line treatment for chronic lymphocytic leukemia but suffers from poor and variable oral bioavailability due to its pH-dependent solubility, CYP3A4 metabolism, and P-gp efflux. Thus, the objective of this study was to improve the solubility and dissolution behaviour, in turn enhancing bioavailability, by formulating solid lipid nanoparticles (SLNs). ACP loaded SLNs (ACP-SLNs) were prepared via solvent-free hot emulsification followed by a double sonication process. A combination of glyceryl di-behenate and stearyl palmitate along with Tween 80 was used as the lipid phase to dissolve ACP. A 1% w/v Poloxomer188 solution served as the aqueous phase. The optimized ACP-SLNs were spherical in shape and had particle size of 234.7–257.5 nm, PDI of 0.261–0.320 and loading efficiency of 18.70 ± 1.78%. A typical biphasic release pattern was observed from ACP-SLNs in the in vitro dissolution studies under gastrointestinal and plasma pH conditions (&gt; 90% drug release at pH 4.5 ± 0.2, 6.8 ± 0.2 (representing GIT), and 7.4 ± 0.2 (representing plasma) at 8, 16 and 24 h, respectively). The freeze-dried product was stable when stored at 5 °C for over 6 months. Compared with the bulk drug suspension, the ACP-SLNs suspension resulted in 2.29-fold increase in oral bioavailability and more importantly 2.46-fold increase in the distribution of drug to spleen. Additionally, inhibition of lymph production and flow by administering cycloheximide resulted in 46.01% decrease in the overall absorption of ACP-SLNs, indicating the significance of lymphatic uptake process in the oral absorption of ACP-SLNs.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04157-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biogenic synthesized CuO nanoparticles and 5-fluorouracil loaded anticancer gel for HeLa cervical cancer cells
IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-27 DOI: 10.1186/s11671-024-04166-7
Gouranga Dutta, Santhosh Kumar Chinnaiyan, Thirunavukkarasu Palaniyandi, Abimanyu Sugumaran, Damodharan Narayanasamy

Cervical cancer remains a significant health challenge in developing countries are high due to low HPV vaccination rates, delayed diagnosis, and restricted healthcare access. Metal nanomaterials, such as copper oxide (CuO) nanoparticles (NPs), have shown significant promise in cancer therapy due to their ability to induce apoptosis. 5-Fluorouracil (5-Fu) enhances the cytotoxic effect against cervical cancer, working synergistically with CuO NPs to maximize the therapeutic impact while potentially reducing the 5-Fu's systemic side effects. This study explores the synergistic therapeutic potential of green-synthesized CuO NPs combined with 5-Fu in a gel formulation for targeted anticancer activity against HeLa cervical cancer cells. CuO NPs were synthesized using Trichosanthes dioica dried seeds extract and incorporated into a pectin-xanthan gum-based gel. The green-synthesized CuO NPs exhibited a zeta potential of −23.7 mV, a particle size of approximately 26 nm, and spherical morphology. Characterization studies, including FTIR, viscosity, spreadability, pH, and stability assessments, confirmed the gel's suitability for vaginal delivery. In-vitro drug release showed xanthan gum extended the release up to 8 h. The MTT assay revealed PXFCu6 gel's IC50 at 11.82 ± 0.22 μg/mL, significantly more cytotoxic to HeLa cells, being 3.62 times potent than CuO NPs (IC50: 42.8 ± 0.24 μg/mL) and 1.63 times potent than 5-Fu alone (IC50: 19.3 ± 0.49 μg/mL). The antibacterial assay showed no inhibition for the plain gel, but T. dioica-mediated CuO NPs exhibited inhibition of 22.35 ± 4.9 mm. PXFCu6 gel had the more potent inhibition at 52.05 ± 1.37 mm against Escherichia coli growth. The PXFCu6 gel showed better stability at 4 °C, maintaining viscosity, pH, and drug release, unlike 25 °C where a mild degradation occurred. This research highlights the potential of the CuO NPs-5-Fu gel as a novel, effective therapeutic strategy for cervical cancer treatment.

Graphical abstract

{"title":"Biogenic synthesized CuO nanoparticles and 5-fluorouracil loaded anticancer gel for HeLa cervical cancer cells","authors":"Gouranga Dutta,&nbsp;Santhosh Kumar Chinnaiyan,&nbsp;Thirunavukkarasu Palaniyandi,&nbsp;Abimanyu Sugumaran,&nbsp;Damodharan Narayanasamy","doi":"10.1186/s11671-024-04166-7","DOIUrl":"10.1186/s11671-024-04166-7","url":null,"abstract":"<div><p>Cervical cancer remains a significant health challenge in developing countries are high due to low HPV vaccination rates, delayed diagnosis, and restricted healthcare access. Metal nanomaterials, such as copper oxide (CuO) nanoparticles (NPs), have shown significant promise in cancer therapy due to their ability to induce apoptosis. 5-Fluorouracil (5-Fu) enhances the cytotoxic effect against cervical cancer, working synergistically with CuO NPs to maximize the therapeutic impact while potentially reducing the 5-Fu's systemic side effects. This study explores the synergistic therapeutic potential of green-synthesized CuO NPs combined with 5-Fu in a gel formulation for targeted anticancer activity against HeLa cervical cancer cells. CuO NPs were synthesized using <i>Trichosanthes dioica</i> dried seeds extract and incorporated into a pectin-xanthan gum-based gel. The green-synthesized CuO NPs exhibited a zeta potential of −23.7 mV, a particle size of approximately 26 nm, and spherical morphology. Characterization studies, including FTIR, viscosity, spreadability, pH, and stability assessments, confirmed the gel's suitability for vaginal delivery. <i>In-vitro</i> drug release showed xanthan gum extended the release up to 8 h. The MTT assay revealed PXFCu6 gel's IC<sub>50</sub> at 11.82 ± 0.22 μg/mL, significantly more cytotoxic to HeLa cells, being 3.62 times potent than CuO NPs (IC<sub>50</sub>: 42.8 ± 0.24 μg/mL) and 1.63 times potent than 5-Fu alone (IC<sub>50</sub>: 19.3 ± 0.49 μg/mL). The antibacterial assay showed no inhibition for the plain gel, but <i>T. dioica</i>-mediated CuO NPs exhibited inhibition of 22.35 ± 4.9 mm. PXFCu6 gel had the more potent inhibition at 52.05 ± 1.37 mm against <i>Escherichia coli</i> growth. The PXFCu6 gel showed better stability at 4 °C, maintaining viscosity, pH, and drug release, unlike 25 °C where a mild degradation occurred. This research highlights the potential of the CuO NPs-5-Fu gel as a novel, effective therapeutic strategy for cervical cancer treatment.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04166-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanoscale Research Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1