{"title":"Guided bone regeneration at dehiscence comparing synthetic bone substitute versus bovine bone mineral: A multicenter, noninferiority, randomized trial","authors":"Jae-Kook Cha, Ui-Won Jung, Eduardo Montero-Solis, Ignacio Sanz-Sánchez, Mariano Sanz-Alonso","doi":"10.1111/cid.13386","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>To evaluate the efficacy of guided bone regeneration (GBR) for the treatment of peri-implant dehiscence defects using a synthetic bone substitute (SBS) or a deproteinized bovine bone mineral (DBBM) as a bone substitute.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Patients with expected dehiscence defects following implant placement were randomized to use either SBS or DBBM together with a bioabsorbable collagen membrane over dehiscenced implant surfaces aimed for GBR. The changes in the bone defect size were measured before the GBR procedure and 6 months after implant placement at the re-entry surgery. Secondary outcomes included peri-implant health outcomes, implant cumulative survival rates, bone level changes, and patient-reported outcomes (PROMs) at prosthesis delivery and 1-year follow-up.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Of the 49 included patients, 24 were treated with SBS and 25 with DBBM. In the SBS group, the defect height (DH) at implant insertion was 5.1 ± 2.6 mm and was reduced at re-entry to 1.3 ± 2.0 mm (74.5%). In the DBBM group, the respective changes in DH were 4.1 ± 1.7 mm and 1.5 ± 1.9 mm (63.4%). These differences were not statistically significant (<i>p</i> = 0.216). The complete defect resolution rate was also comparable in both groups without statistical difference (62.5% of patients (15/24) vs. 44% of patients (11/25)). Overall, the marginal bone levels remained stable during the 1-year follow-up in both groups.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The SBS is noninferior to DBBM for simultaneous GBR to implant placement at implant sites with buccal dehiscences in terms of defect resolution and evaluated secondary outcomes (KCT0008393 − this clinical trial was not registered before participant recruitment and randomization).</p>\n </section>\n </div>","PeriodicalId":50679,"journal":{"name":"Clinical Implant Dentistry and Related Research","volume":"26 6","pages":"1233-1244"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cid.13386","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Implant Dentistry and Related Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cid.13386","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Aim
To evaluate the efficacy of guided bone regeneration (GBR) for the treatment of peri-implant dehiscence defects using a synthetic bone substitute (SBS) or a deproteinized bovine bone mineral (DBBM) as a bone substitute.
Methods
Patients with expected dehiscence defects following implant placement were randomized to use either SBS or DBBM together with a bioabsorbable collagen membrane over dehiscenced implant surfaces aimed for GBR. The changes in the bone defect size were measured before the GBR procedure and 6 months after implant placement at the re-entry surgery. Secondary outcomes included peri-implant health outcomes, implant cumulative survival rates, bone level changes, and patient-reported outcomes (PROMs) at prosthesis delivery and 1-year follow-up.
Results
Of the 49 included patients, 24 were treated with SBS and 25 with DBBM. In the SBS group, the defect height (DH) at implant insertion was 5.1 ± 2.6 mm and was reduced at re-entry to 1.3 ± 2.0 mm (74.5%). In the DBBM group, the respective changes in DH were 4.1 ± 1.7 mm and 1.5 ± 1.9 mm (63.4%). These differences were not statistically significant (p = 0.216). The complete defect resolution rate was also comparable in both groups without statistical difference (62.5% of patients (15/24) vs. 44% of patients (11/25)). Overall, the marginal bone levels remained stable during the 1-year follow-up in both groups.
Conclusion
The SBS is noninferior to DBBM for simultaneous GBR to implant placement at implant sites with buccal dehiscences in terms of defect resolution and evaluated secondary outcomes (KCT0008393 − this clinical trial was not registered before participant recruitment and randomization).
期刊介绍:
The goal of Clinical Implant Dentistry and Related Research is to advance the scientific and technical aspects relating to dental implants and related scientific subjects. Dissemination of new and evolving information related to dental implants and the related science is the primary goal of our journal.
The range of topics covered by the journals will include but be not limited to:
New scientific developments relating to bone
Implant surfaces and their relationship to the surrounding tissues
Computer aided implant designs
Computer aided prosthetic designs
Immediate implant loading
Immediate implant placement
Materials relating to bone induction and conduction
New surgical methods relating to implant placement
New materials and methods relating to implant restorations
Methods for determining implant stability
A primary focus of the journal is publication of evidenced based articles evaluating to new dental implants, techniques and multicenter studies evaluating these treatments. In addition basic science research relating to wound healing and osseointegration will be an important focus for the journal.