Thermal runaway process in lithium-ion batteries: A review

Yixin Dai , Aidin Panahi
{"title":"Thermal runaway process in lithium-ion batteries: A review","authors":"Yixin Dai ,&nbsp;Aidin Panahi","doi":"10.1016/j.nxener.2024.100186","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change and global warming represent critical challenges for the 21st century, partly attributable to the combustion of fossil fuels. The adoption of alternative energy sources presents viable solutions to mitigate these challenges. Among the strategies to address climate change, lithium-ion batteries (LIBs) have emerged as increasingly important. However, the advancement of LIB technology is hindered by the phenomenon of thermal runaway (TR), which constitutes the primary failure mechanism of LIBs, potentially leading severe fires and explosions. This review provides a comprehensive understanding of the TR mechanisms in LIBs, which vary significantly depending on the battery’s materials. Extensive research has been conducted on the component materials of LIBs, the causes triggering TR, and the mechanisms underlying TR in laboratory settings. Yet, further research to fully understand and mitigate TR is necessary as it is a highly complex process that is readily influenced by both external conditions and internal reactions. For LIBs composed of different materials, the processes and mechanisms underlying TR exhibit significant variations. Therefore, this review emphasizes the need to study various battery cells to gain a comprehensive understanding of the TR mechanisms. The focus of this review lies in elucidating the diverse TR mechanisms, preventive methods, and highlighting recent key progresses in research aimed at improving the safety of LIBs. Finally, this review concludes with recommendations for future research and development on the safety of LIBs, emphasizing the need for a more coherent view of TR mechanisms and LIB safety.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100186"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000917/pdfft?md5=a009dfce313becd08f0e8e52154c7330&pid=1-s2.0-S2949821X24000917-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change and global warming represent critical challenges for the 21st century, partly attributable to the combustion of fossil fuels. The adoption of alternative energy sources presents viable solutions to mitigate these challenges. Among the strategies to address climate change, lithium-ion batteries (LIBs) have emerged as increasingly important. However, the advancement of LIB technology is hindered by the phenomenon of thermal runaway (TR), which constitutes the primary failure mechanism of LIBs, potentially leading severe fires and explosions. This review provides a comprehensive understanding of the TR mechanisms in LIBs, which vary significantly depending on the battery’s materials. Extensive research has been conducted on the component materials of LIBs, the causes triggering TR, and the mechanisms underlying TR in laboratory settings. Yet, further research to fully understand and mitigate TR is necessary as it is a highly complex process that is readily influenced by both external conditions and internal reactions. For LIBs composed of different materials, the processes and mechanisms underlying TR exhibit significant variations. Therefore, this review emphasizes the need to study various battery cells to gain a comprehensive understanding of the TR mechanisms. The focus of this review lies in elucidating the diverse TR mechanisms, preventive methods, and highlighting recent key progresses in research aimed at improving the safety of LIBs. Finally, this review concludes with recommendations for future research and development on the safety of LIBs, emphasizing the need for a more coherent view of TR mechanisms and LIB safety.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂离子电池的热失控过程:综述
气候变化和全球变暖是 21 世纪面临的严峻挑战,部分原因在于化石燃料的燃烧。采用替代能源为缓解这些挑战提供了可行的解决方案。在应对气候变化的战略中,锂离子电池(LIB)显得越来越重要。然而,热失控(TR)现象阻碍了锂离子电池技术的发展,它是锂离子电池的主要失效机制,可能导致严重的火灾和爆炸。本综述全面介绍了锂离子电池的热失控机制,不同电池材料的热失控机制差异很大。人们已经在实验室环境中对锂电池的组成材料、触发 TR 的原因以及 TR 的基本机制进行了广泛的研究。然而,由于 TR 是一个非常复杂的过程,很容易受到外部条件和内部反应的影响,因此有必要开展进一步的研究,以充分了解和缓解 TR。对于由不同材料组成的锂电池,TR 的发生过程和机理表现出很大的差异。因此,本综述强调有必要研究各种电池单元,以全面了解 TR 机制。本综述的重点在于阐明不同的 TR 机制和预防方法,并着重介绍近期在提高锂电池安全性方面取得的主要研究进展。最后,本综述对未来有关 LIB 安全性的研究和发展提出了建议,强调需要对 TR 机制和 LIB 安全性有更一致的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potential uses of perovskite-based photovoltaics for hydrogen production: A pathway to sustainable energy solutions Experiments on a discretized 3D compound parabolic concentrator with a sensible heat storage Enhanced electrochemical performance of polycrystalline NCM811 cathode at high voltage through Te-doped LiNbO3 coating for lithium-ion batteries Lithium-ion batteries operating at ultrawide temperature range from −90 to +90 °C Influence of phenol-formaldehyde and melamine-formaldehyde resins on the gasification of high-pressure laminate waste materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1