{"title":"Dynamic compliance penis enlargement patch","authors":"Rui Zheng , Wenwen Zhong , Muyuan Chai , Xuetao Shi","doi":"10.1016/j.bioactmat.2024.08.039","DOIUrl":null,"url":null,"abstract":"<div><p>Men are particularly sensitive to penis size, especially those with a deformed or injured penis. This can lead to a strong desire for penis enlargement surgery. Given the ethical sensitivities of the penis, penile implants need to be developed with both efficacy and safety. In this study, a polyvinyl alcohol (PVA) patch for penile enlargement prepared via cyclic freeze‒thaw cycles and alkaline treatment. The PVA hydrogels treated with 5 M NaOH had the best mechanical properties and stability. A negative Poisson's ratio structure is incorporated into the design of the enlargement patch, which allows it to conform well to the deformation of the penis. In rabbit models, the enlarged patches can effectively enlarge the penis without degradation or fibrosis while maintaining long-term stability <em>in vivo</em>. This innovation not only provides a safe option for patients in need of penile enlargement but also promises to make a broader contribution to the field of dynamic tissue repair.</p></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"42 ","pages":"Pages 194-206"},"PeriodicalIF":18.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452199X24003761/pdfft?md5=ba25fd8e9c8ef344e32b628f8aad3186&pid=1-s2.0-S2452199X24003761-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24003761","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Men are particularly sensitive to penis size, especially those with a deformed or injured penis. This can lead to a strong desire for penis enlargement surgery. Given the ethical sensitivities of the penis, penile implants need to be developed with both efficacy and safety. In this study, a polyvinyl alcohol (PVA) patch for penile enlargement prepared via cyclic freeze‒thaw cycles and alkaline treatment. The PVA hydrogels treated with 5 M NaOH had the best mechanical properties and stability. A negative Poisson's ratio structure is incorporated into the design of the enlargement patch, which allows it to conform well to the deformation of the penis. In rabbit models, the enlarged patches can effectively enlarge the penis without degradation or fibrosis while maintaining long-term stability in vivo. This innovation not only provides a safe option for patients in need of penile enlargement but also promises to make a broader contribution to the field of dynamic tissue repair.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.