Preparation of PU/SiO2 composite shell microencapsulated phase change materials with high thermal stability and thermal conductivity

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2024-08-31 DOI:10.1016/j.polymer.2024.127518
{"title":"Preparation of PU/SiO2 composite shell microencapsulated phase change materials with high thermal stability and thermal conductivity","authors":"","doi":"10.1016/j.polymer.2024.127518","DOIUrl":null,"url":null,"abstract":"<div><p>To address the issues of poor thermal stability and thermal conductivity in polyurethane (PU) shell microencapsulated phase change materials (MEPCMs), this study prepared PU/SiO<sub>2</sub>-MEPCMs using an interfacial polymerization method combined with electrostatic self-assembly technology. First, the PU shell was synthesized via an interfacial polymerization reaction between isophorone diisocyanate (IPDI) and triethanolamine (TEA). Subsequently, the hydrolyzed product of tetraethyl orthosilicate (TEOS), monosilicic acid (Si (OH)<sub>4</sub>), was adsorbed onto the PU shell surface using electrostatic self-assembly technology and reacted with the –NCO groups to form an SiO<sub>2</sub> shell. The effects of the PU/SiO<sub>2</sub> composite shell on the surface morphology, chemical structure, compactness, thermal stability, phase transition performance, thermal conductivity, and thermal cycling stability of MEPCMs were investigated. The results showed that the formation of the PU/SiO<sub>2</sub> composite shell significantly improved the thermal stability, compactness, thermal conductivity, and cyclic stability of MEPCMs. After continuous treatment at 150<em>°C</em> for 120 min, the leakage rate of the core material decreased from 12.13 <em>%</em> to 3.74 <em>%</em>, and the heat-resistant temperature (T<sub>95 <em>%</em></sub>) increased by 30<em>°C</em>. Even after 1000 thermal cycles, MEPCMs still exhibited excellent heat storage performance. Additionally, even under high temperature conditions of 257<em>°C</em> (where pure butyl stearate completely decomposes), the PU/SiO<sub>2</sub>-MEPCMs still maintained a stable core-shell structure. The introduction of the SiO<sub>2</sub> shell greatly enhanced the thermal conductivity of MEPCMs, aligning the phase change temperature more closely with that of the core material and effectively reducing the supercooling phenomenon. Furthermore, the stable energy storage system formed by MEPCMs on the finished fabric surface can endow it with excellent temperature regulation functionality.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124008541","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To address the issues of poor thermal stability and thermal conductivity in polyurethane (PU) shell microencapsulated phase change materials (MEPCMs), this study prepared PU/SiO2-MEPCMs using an interfacial polymerization method combined with electrostatic self-assembly technology. First, the PU shell was synthesized via an interfacial polymerization reaction between isophorone diisocyanate (IPDI) and triethanolamine (TEA). Subsequently, the hydrolyzed product of tetraethyl orthosilicate (TEOS), monosilicic acid (Si (OH)4), was adsorbed onto the PU shell surface using electrostatic self-assembly technology and reacted with the –NCO groups to form an SiO2 shell. The effects of the PU/SiO2 composite shell on the surface morphology, chemical structure, compactness, thermal stability, phase transition performance, thermal conductivity, and thermal cycling stability of MEPCMs were investigated. The results showed that the formation of the PU/SiO2 composite shell significantly improved the thermal stability, compactness, thermal conductivity, and cyclic stability of MEPCMs. After continuous treatment at 150°C for 120 min, the leakage rate of the core material decreased from 12.13 % to 3.74 %, and the heat-resistant temperature (T95 %) increased by 30°C. Even after 1000 thermal cycles, MEPCMs still exhibited excellent heat storage performance. Additionally, even under high temperature conditions of 257°C (where pure butyl stearate completely decomposes), the PU/SiO2-MEPCMs still maintained a stable core-shell structure. The introduction of the SiO2 shell greatly enhanced the thermal conductivity of MEPCMs, aligning the phase change temperature more closely with that of the core material and effectively reducing the supercooling phenomenon. Furthermore, the stable energy storage system formed by MEPCMs on the finished fabric surface can endow it with excellent temperature regulation functionality.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制备具有高热稳定性和热导率的聚氨酯/二氧化硅复合外壳微胶囊相变材料
为了解决聚氨酯(PU)外壳微胶囊相变材料(MEPCMs)热稳定性和导热性差的问题,本研究采用界面聚合法结合静电自组装技术制备了聚氨酯/二氧化硅-MEPCMs。首先,通过异佛尔酮二异氰酸酯(IPDI)和三乙醇胺(TEA)之间的界面聚合反应合成聚氨酯外壳。随后,利用静电自组装技术将原硅酸四乙酯(TEOS)的水解产物单硅酸(Si (OH)4)吸附到聚氨酯外壳表面,并与 -NCO 基团反应形成 SiO2 外壳。研究了聚氨酯/二氧化硅复合壳对 MEPCMs 的表面形貌、化学结构、致密性、热稳定性、相变性能、热导率和热循环稳定性的影响。结果表明,PU/SiO2 复合外壳的形成显著提高了 MEPCM 的热稳定性、致密性、热导率和热循环稳定性。在 150°C 温度下连续处理 120 分钟后,芯材的泄漏率从 12.13% 降至 3.74%,耐热温度(T95 %)提高了 30°C。即使经过 1000 次热循环,MEPCMs 仍表现出优异的蓄热性能。此外,即使在 257°C 的高温条件下(纯硬脂酸丁酯完全分解),PU/SiO2-MEPCMs 仍能保持稳定的核壳结构。二氧化硅外壳的引入大大提高了 MEPCM 的导热性,使相变温度与芯材的相变温度更加接近,有效减少了过冷现象。此外,MEPCMs 在成品织物表面形成的稳定储能系统还能赋予其出色的温度调节功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Editorial Board Contents continued Graphical abstract TOC Graphical abstract TOC Dilatational rheological studies on the surface micelles of Poly(styrene)-b-Poly(4-vinyl pyridine) block copolymer at the air-water interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1