{"title":"Pipe merging for transient gas network optimization problems","authors":"","doi":"10.1016/j.apm.2024.115660","DOIUrl":null,"url":null,"abstract":"<div><p>In practice, transient gas transport problems frequently have to be solved for large-scale gas networks. Gas network optimization problems typically belong to the class of Mixed-Integer Nonlinear Programming Problems (MINLP). However current state-of-the-art MINLP solvers are not yet mature enough to solve large-scale real-world instances. Therefore, an established approach in practice is to solve the problems with respect to a coarser representation of the network and thereby reducing the size of the underlying model. Two well-known aggregation methods that effectively reduce the network size are parallel and serial pipe merges. However, these methods have only been studied in stationary gas transport problems so far. This paper closes this gap and presents parallel and serial pipe merging methods for transient gas transport problems. An empirical evaluation indicates that the developed methods perform very accurately on a huge set of fine-grained real-world data taken from one of the largest transmission system operators in Europe.</p></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0307904X2400413X/pdfft?md5=d0b617c326463f1e947ca6589b351307&pid=1-s2.0-S0307904X2400413X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X2400413X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In practice, transient gas transport problems frequently have to be solved for large-scale gas networks. Gas network optimization problems typically belong to the class of Mixed-Integer Nonlinear Programming Problems (MINLP). However current state-of-the-art MINLP solvers are not yet mature enough to solve large-scale real-world instances. Therefore, an established approach in practice is to solve the problems with respect to a coarser representation of the network and thereby reducing the size of the underlying model. Two well-known aggregation methods that effectively reduce the network size are parallel and serial pipe merges. However, these methods have only been studied in stationary gas transport problems so far. This paper closes this gap and presents parallel and serial pipe merging methods for transient gas transport problems. An empirical evaluation indicates that the developed methods perform very accurately on a huge set of fine-grained real-world data taken from one of the largest transmission system operators in Europe.
期刊介绍:
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.
This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.