A chimera method for thermal part-scale metal additive manufacturing simulation

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED Finite Elements in Analysis and Design Pub Date : 2024-09-04 DOI:10.1016/j.finel.2024.104238
{"title":"A chimera method for thermal part-scale metal additive manufacturing simulation","authors":"","doi":"10.1016/j.finel.2024.104238","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a Chimera approach for the thermal problems in welding and metallic Additive Manufacturing (AM). In particular, a moving mesh is attached to the moving heat source while a fixed background mesh covers the rest of the computational domain. The thermal field of the moving mesh is solved in the heat source reference frame. The chosen framework to couple the solutions on both meshes is a non-overlapping Domain Decomposition (DD) with Neumann–Dirichlet transmission conditions.</p><p>Increased steadiness and accuracy within the vicinity of the Heat Affected Zone (HAZ) are the main advantages of this approach. The steadiness gain allows for the use of larger time steps, which is vital in AM applications and, in particular, Laser Powder Bed Fusion (LPBF), where the disparity of time scales represents a major hurdle. Moreover, enhanced accuracy can be observed in the resulting morphology of the melt pool. It will be shown that the method addresses classical shortcomings pointed out by Goldak without requiring the use of an asymmetrical heat source profile.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X2400132X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a Chimera approach for the thermal problems in welding and metallic Additive Manufacturing (AM). In particular, a moving mesh is attached to the moving heat source while a fixed background mesh covers the rest of the computational domain. The thermal field of the moving mesh is solved in the heat source reference frame. The chosen framework to couple the solutions on both meshes is a non-overlapping Domain Decomposition (DD) with Neumann–Dirichlet transmission conditions.

Increased steadiness and accuracy within the vicinity of the Heat Affected Zone (HAZ) are the main advantages of this approach. The steadiness gain allows for the use of larger time steps, which is vital in AM applications and, in particular, Laser Powder Bed Fusion (LPBF), where the disparity of time scales represents a major hurdle. Moreover, enhanced accuracy can be observed in the resulting morphology of the melt pool. It will be shown that the method addresses classical shortcomings pointed out by Goldak without requiring the use of an asymmetrical heat source profile.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于热部件尺度金属快速成型制造模拟的嵌合体方法
本文针对焊接和金属增材制造(AM)中的热问题提出了一种 Chimera 方法。具体而言,一个移动的网格被连接到移动的热源上,而一个固定的背景网格则覆盖计算域的其余部分。移动网格的热场在热源参考框架内求解。将两个网格上的解耦合在一起所选择的框架是具有新曼-德里赫特传输条件的非重叠域分解(DD)。稳定度的提高允许使用更大的时间步长,这在 AM 应用中,尤其是激光粉末床熔融 (LPBF) 中至关重要,因为时间尺度的差异是一个主要障碍。此外,在熔池的形态上也能观察到更高的精度。研究表明,该方法无需使用非对称热源剖面就能解决 Goldak 指出的传统缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
期刊最新文献
A two-level semi-hybrid-mixed model for Stokes–Brinkman flows with divergence-compatible velocity–pressure elements A non-intrusive multiscale framework for 2D analysis of local features by GFEM — A thorough parameter investigation On the Gauss–Legendre quadrature rule of deep energy method for one-dimensional problems in solid mechanics A modular finite element approach to saturated poroelasticity dynamics: Fluid–solid coupling with Neo-Hookean material and incompressible flow Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1