{"title":"Bidirectional Dual-Input Single-Output DC-DC Converter Based on Passivity Control Strategy","authors":"Mohsen Abdolahi;Saeed Hosseinnataj;Majid Norouzian;Jafar Adabi;Edris Pouresmaeil","doi":"10.1109/OJPEL.2024.3444914","DOIUrl":null,"url":null,"abstract":"The increasing popularity of Electric Vehicles (EVs) can be attributed to recent advancements in highly efficient power conversion technology, as well as a desire to reduce reliance on fossil fuels. As a result, bidirectional DC-DC converters have gained significant interest and importance in the field of electric vehicle applications. This paper introduces an enhanced DC-DC converter, the Bidirectional Dual-Input Single-Output (BDISO) converter for the Electrical Vehicle application, which combines multiple energy sources for efficient power delivery to a load. The converter offers versatile operational modes and employs a Passivity-Based Control (PBC) strategy for stable closed-loop control. A mathematical model is developed and analyzed to understand its behavior. In addition, rigorous evaluations of reliability and efficiency demonstrate robust performance and high operational efficiency across various conditions in comparison with exciting systems. Finally, the proposed converter with its controller is validated through simulation and experimental results.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10638174","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10638174/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing popularity of Electric Vehicles (EVs) can be attributed to recent advancements in highly efficient power conversion technology, as well as a desire to reduce reliance on fossil fuels. As a result, bidirectional DC-DC converters have gained significant interest and importance in the field of electric vehicle applications. This paper introduces an enhanced DC-DC converter, the Bidirectional Dual-Input Single-Output (BDISO) converter for the Electrical Vehicle application, which combines multiple energy sources for efficient power delivery to a load. The converter offers versatile operational modes and employs a Passivity-Based Control (PBC) strategy for stable closed-loop control. A mathematical model is developed and analyzed to understand its behavior. In addition, rigorous evaluations of reliability and efficiency demonstrate robust performance and high operational efficiency across various conditions in comparison with exciting systems. Finally, the proposed converter with its controller is validated through simulation and experimental results.