Gunther Liebhard, Gema Guzmán, José A. Gómez, Silvia Winter, Johann G. Zaller, Thomas Bauer, Annegret Nicolai, Daniel Cluzeau, Daniela Popescu, Claudiu-Ioan Bunea, Peter Strauss
{"title":"Vineyard cover crop management strategies and their effect on soil properties across Europe","authors":"Gunther Liebhard, Gema Guzmán, José A. Gómez, Silvia Winter, Johann G. Zaller, Thomas Bauer, Annegret Nicolai, Daniel Cluzeau, Daniela Popescu, Claudiu-Ioan Bunea, Peter Strauss","doi":"10.1111/ejss.13573","DOIUrl":null,"url":null,"abstract":"<p>Vineyard soils are often of inherently poor quality with low organic carbon content. Management can improve soil properties and thus soil fertility. In European wine-growing regions, a broad range of inter-row management strategies evolved based on specific local site conditions and the varying effects of management intensities on soil, water balance, yield and grape quality. Accordingly, there is a need to investigate the effects of locally common cover crop management strategies and tillage intensity on soil organic carbon content and soil physical parameters. In this study, we investigated the impact of the most common inter-row management practices in Austria, France, Romania and Spain. In all countries, we compared paired sites. Each site with cover crops and inter-row management of low intensity was compared with one site with (temporarily) bare soil and high management intensity. All studied sites with cover crops and low management intensity, except those in Spain, had higher organic carbon contents than the paired more intensively managed vineyards. However, the highly water-limited Spanish vineyards with temporary cover crops had lower organic carbon contents than the paired sites with bare soil. Sites with more organic carbon had better results for bulk density, percolation stability (PS), hydraulic conductivity and available soil water, with soil hydraulic parameters being less pronounced than others. Country comparison of inter-row weed control systems showed that PS was particularly low in sampled vineyards in Romania and Spain, where weed control is based on intensive mechanical tillage. Alternating management systems with tillage every second inter-row showed a decrease in soil structure compared with permanent green cover. Thus, inter-row management with cover crops and reduced tillage increases soil organic carbon content and improves soil structure compared with bare soil management. If local constraints, such as water scarcity, do not allow year-round planting, alternating inter-row management with several years of alternating periods may be an option to mitigate those adverse effects. However, negative impact on the soil structure occurs with the very first tillage operation, whereas negative effects on the carbon balance only appear after long-term use of tillage.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.13573","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.13573","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Vineyard soils are often of inherently poor quality with low organic carbon content. Management can improve soil properties and thus soil fertility. In European wine-growing regions, a broad range of inter-row management strategies evolved based on specific local site conditions and the varying effects of management intensities on soil, water balance, yield and grape quality. Accordingly, there is a need to investigate the effects of locally common cover crop management strategies and tillage intensity on soil organic carbon content and soil physical parameters. In this study, we investigated the impact of the most common inter-row management practices in Austria, France, Romania and Spain. In all countries, we compared paired sites. Each site with cover crops and inter-row management of low intensity was compared with one site with (temporarily) bare soil and high management intensity. All studied sites with cover crops and low management intensity, except those in Spain, had higher organic carbon contents than the paired more intensively managed vineyards. However, the highly water-limited Spanish vineyards with temporary cover crops had lower organic carbon contents than the paired sites with bare soil. Sites with more organic carbon had better results for bulk density, percolation stability (PS), hydraulic conductivity and available soil water, with soil hydraulic parameters being less pronounced than others. Country comparison of inter-row weed control systems showed that PS was particularly low in sampled vineyards in Romania and Spain, where weed control is based on intensive mechanical tillage. Alternating management systems with tillage every second inter-row showed a decrease in soil structure compared with permanent green cover. Thus, inter-row management with cover crops and reduced tillage increases soil organic carbon content and improves soil structure compared with bare soil management. If local constraints, such as water scarcity, do not allow year-round planting, alternating inter-row management with several years of alternating periods may be an option to mitigate those adverse effects. However, negative impact on the soil structure occurs with the very first tillage operation, whereas negative effects on the carbon balance only appear after long-term use of tillage.
期刊介绍:
The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.