首页 > 最新文献

European Journal of Soil Science最新文献

英文 中文
Easily mobilized metals and acidity in acid sulfate soils across the Swedish coastal plains 瑞典沿海平原酸性硫酸盐土壤中的易迁移金属和酸度
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-11-18 DOI: 10.1111/ejss.70013
Alexandra Nyman, Anton Boman, Anders Johnson, Mark Dopson, Mats E. Åström

Acid sulfate soils are found globally and have significant environmental impact as a source for metals and acidity to surrounding streams that can cause, for example, large-scale fish kills. In the face of changing climate and its effect on groundwater fluctuations, the environmental risk associated with these soils needs to be thoroughly investigated. This study examined the water-soluble concentrations of multiple elements from the oxidized, transition and reduced zones of acid sulfate soil profiles situated on the Swedish coastal plains. By comparing untreated (naturally oxidized in field) and incubated samples from these zones, we gain insight into the current and near-future mobilization and leaching of acidity and metals that occur in these soils. The results showed that concentrations of Al, Cd, Co, Mn, Ni, S and Zn mobilized from incubated samples were about an order of magnitude higher than from the untreated samples. Notably, the concentrations of mobilized Co, Mn and Ni were higher than released by 1 M HCl at the same sites, highlighting the particularly high mobility of these metals from in situ oxidation of acid sulfate soils. Conversely, Fe and Cu showed lower than expected water-soluble concentrations and were also low compared to the 1 M HCl-extractable element concentrations, likely due to rapid re-mobilization of secondary Fe minerals. Arsenic, Cr and Pb showed overall low water-soluble concentrations in both the incubated and untreated samples, consistent with these elements not being abundantly leached from acid sulfate soils. This observation was further supported by the retention of these metals in secondary Fe-mineral phases such as jarosite and schwertmannite as reported in previous studies. A strong correlation between acidity and near-total S indicated that S can serve as an indicator for the acidification risks associated with acid sulfate soil oxidation. Overall, the findings demonstrated that even a small lowering of the groundwater table can lead to significant mobilization of metals and acidity. This highlights the increased risks of environmental degradation in the face of climate change and intensified drainage operations and, thus, the need for proper management to reduce the risks.

酸性硫酸盐土壤遍布全球,对环境有重大影响,是周围溪流的金属和酸性来源,可导致大规模鱼类死亡。面对不断变化的气候及其对地下水波动的影响,需要彻底调查与这些土壤相关的环境风险。这项研究考察了瑞典沿海平原酸性硫酸盐土壤剖面氧化区、过渡区和还原区中多种元素的水溶性浓度。通过比较来自这些区域的未处理样本(在野外自然氧化)和培养样本,我们深入了解了这些土壤当前和不久的将来发生的酸性和金属的迁移和沥滤情况。结果显示,从培养样本中迁移的铝、镉、钴、锰、镍、硒和锌的浓度比未经处理的样本高出约一个数量级。值得注意的是,在同一地点,钴、锰和镍的迁移浓度高于 1 M HCl 释放的浓度,这表明酸性硫酸盐土壤原位氧化作用对这些金属的迁移率特别高。相反,铁和铜的水溶性浓度低于预期,与 1 M HCl 萃取的元素浓度相比也较低,这可能是由于次生铁矿物的快速再移动造成的。在培养样本和未处理样本中,砷、铬和铅的水溶性浓度总体较低,这表明这些元素并未从酸性硫酸盐土壤中大量沥滤出来。以前的研究还发现,这些金属被保留在次生铁矿物相(如绿泥石和石墨)中,这进一步证实了上述观察结果。酸度与近总 S 之间的强相关性表明,S 可以作为与酸性硫酸盐土壤氧化相关的酸化风险指标。总之,研究结果表明,即使地下水位略有下降,也会导致金属和酸度的显著迁移。这突出表明,在气候变化和排水作业加剧的情况下,环境退化的风险增加,因此需要进行适当管理以降低风险。
{"title":"Easily mobilized metals and acidity in acid sulfate soils across the Swedish coastal plains","authors":"Alexandra Nyman,&nbsp;Anton Boman,&nbsp;Anders Johnson,&nbsp;Mark Dopson,&nbsp;Mats E. Åström","doi":"10.1111/ejss.70013","DOIUrl":"https://doi.org/10.1111/ejss.70013","url":null,"abstract":"<p>Acid sulfate soils are found globally and have significant environmental impact as a source for metals and acidity to surrounding streams that can cause, for example, large-scale fish kills. In the face of changing climate and its effect on groundwater fluctuations, the environmental risk associated with these soils needs to be thoroughly investigated. This study examined the water-soluble concentrations of multiple elements from the oxidized, transition and reduced zones of acid sulfate soil profiles situated on the Swedish coastal plains. By comparing untreated (naturally oxidized in field) and incubated samples from these zones, we gain insight into the current and near-future mobilization and leaching of acidity and metals that occur in these soils. The results showed that concentrations of Al, Cd, Co, Mn, Ni, S and Zn mobilized from incubated samples were about an order of magnitude higher than from the untreated samples. Notably, the concentrations of mobilized Co, Mn and Ni were higher than released by 1 M HCl at the same sites, highlighting the particularly high mobility of these metals from in situ oxidation of acid sulfate soils. Conversely, Fe and Cu showed lower than expected water-soluble concentrations and were also low compared to the 1 M HCl-extractable element concentrations, likely due to rapid re-mobilization of secondary Fe minerals. Arsenic, Cr and Pb showed overall low water-soluble concentrations in both the incubated and untreated samples, consistent with these elements not being abundantly leached from acid sulfate soils. This observation was further supported by the retention of these metals in secondary Fe-mineral phases such as jarosite and schwertmannite as reported in previous studies. A strong correlation between acidity and near-total S indicated that S can serve as an indicator for the acidification risks associated with acid sulfate soil oxidation. Overall, the findings demonstrated that even a small lowering of the groundwater table can lead to significant mobilization of metals and acidity. This highlights the increased risks of environmental degradation in the face of climate change and intensified drainage operations and, thus, the need for proper management to reduce the risks.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 6","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
‘Shifting gears ain't easy’: Disciplinary resistances to perspective shifts in soil science and how to move forward 换挡并非易事":土壤科学观点转变的学科阻力及如何前进
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-11-18 DOI: 10.1111/ejss.70010
Philippe C. Baveye, Wilfred Otten, Iain Young

Over the last decade, the fact that novel perspectives on various aspects of soils have remained strongly controversial long after they emerged, without any kind of consensus being reached about them, raises question about the underlying reasons for this phenomenon. The on-going debate on the usefulness of aggregates to describe the functions of soils illustrates some of the key aspects of that question. Similar debates on other soil-related issues also appear stalled, or have been for a long time and are only now moving forward. This might suggest a fundamental aversion to change, which when it gets overcome, only does so slowly. However, at the same time, somewhat surprisingly, researchers appear willing to quickly seize opportunities provided by new idea or novel perspectives on other topics. In that context, the objective of the present article is to analyse in detail what may cause such contrasting reactions to novelty. We consider, then ultimately dismiss, explanations based on how strongly or not novel perspectives have been actively promoted, on how access to suitable technology may impede or only slow down perspective shifts and on whether a recent theory of the ‘slowed canonical progress in large fields of science’ applies to the relatively small soil science community. Then, taking soil aggregates as a case in point, we come to realize that it is the extent to which a novel perspective mandates an interdisciplinary approach that determines whether or not it is adopted quickly. From that standpoint, we envisage a number of practical actions that could be taken to facilitate in the future the emergence in soil science of interdisciplinary research efforts, which we argue are absolutely essential to successfully tackle the enormous complexity of soils and to come up with satisfactory answers to the daunting environmental and food security problems we currently face in their management.

在过去的十年中,有关土壤各个方面的新观点在出现后很长时间内一直存在着强烈的争议,没有达成任何共识,这一事实让人们对造成这种现象的根本原因产生了疑问。目前正在进行的关于聚合体对描述土壤功能是否有用的争论就说明了这一问题的一些关键方面。关于其他土壤相关问题的类似辩论似乎也停滞不前,或者已经停滞了很长时间,直到现在才有所进展。这可能表明,人们从根本上厌恶变革,即使克服了这种厌恶,也只是缓慢地进行。但与此同时,令人惊讶的是,研究人员似乎愿意迅速抓住其他课题的新想法或新观点所带来的机遇。在这种情况下,本文的目的是详细分析是什么原因导致了对新颖性的这种截然不同的反应。我们考虑并最终否定了基于以下方面的解释:新观点是否得到了积极推广;获得适当技术的途径如何阻碍或只是减缓了观点的转变;以及最近提出的 "大型科学领域的典型进展放缓 "理论是否适用于相对较小的土壤科学界。然后,以土壤团聚体为例,我们认识到,一个新观点在多大程度上要求采用跨学科方法,决定了它是否能被迅速采纳。从这个角度出发,我们设想了一些可以采取的实际行动,以促进未来土壤科学中跨学科研究工作的出现。我们认为,跨学科研究工作对于成功解决土壤的巨大复杂性以及为我们目前在土壤管理中面临的令人生畏的环境和粮食安全问题找到令人满意的答案是绝对必要的。
{"title":"‘Shifting gears ain't easy’: Disciplinary resistances to perspective shifts in soil science and how to move forward","authors":"Philippe C. Baveye,&nbsp;Wilfred Otten,&nbsp;Iain Young","doi":"10.1111/ejss.70010","DOIUrl":"https://doi.org/10.1111/ejss.70010","url":null,"abstract":"<p>Over the last decade, the fact that novel perspectives on various aspects of soils have remained strongly controversial long after they emerged, without any kind of consensus being reached about them, raises question about the underlying reasons for this phenomenon. The on-going debate on the usefulness of aggregates to describe the functions of soils illustrates some of the key aspects of that question. Similar debates on other soil-related issues also appear stalled, or have been for a long time and are only now moving forward. This might suggest a fundamental aversion to change, which when it gets overcome, only does so slowly. However, at the same time, somewhat surprisingly, researchers appear willing to quickly seize opportunities provided by new idea or novel perspectives on other topics. In that context, the objective of the present article is to analyse in detail what may cause such contrasting reactions to novelty. We consider, then ultimately dismiss, explanations based on how strongly or not novel perspectives have been actively promoted, on how access to suitable technology may impede or only slow down perspective shifts and on whether a recent theory of the ‘slowed canonical progress in large fields of science’ applies to the relatively small soil science community. Then, taking soil aggregates as a case in point, we come to realize that it is the extent to which a novel perspective mandates an interdisciplinary approach that determines whether or not it is adopted quickly. From that standpoint, we envisage a number of practical actions that could be taken to facilitate in the future the emergence in soil science of interdisciplinary research efforts, which we argue are absolutely essential to successfully tackle the enormous complexity of soils and to come up with satisfactory answers to the daunting environmental and food security problems we currently face in their management.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 6","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover cropping in organic reduced tillage systems: Maximizing soil cover or plant above ground biomass input? 有机少耕系统中的覆盖种植:最大化土壤覆盖还是植物地上生物量输入?
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-11-12 DOI: 10.1111/ejss.70012
Simon Oberholzer, Klaus A. Jarosch, Nadine Harder, Markus Steffens, Chinwe Ifejika Speranza

Cover crops are grown between two main crops to reduce periods of bare fallow. In highly diverse crop rotations, the lengths of break periods between two main crops vary highly over time and consequently the cover cropping management differs from year to year. Long-term field trials are thus of limited use because the same cover cropping approach only appears once in several years. This increases the need to better determine the immediate effects of different cover cropping strategies on soil properties. This study evaluated two cover cropping strategies and monitored the temporal development of several soil properties on six fields in Eastern Switzerland in the 9 months period between harvest of winter wheat and sowing of spring crops. The two tested strategies were (a) double cover cropping (DCC) where two cover crops mixtures were grown subsequently and shallowly (3 cm) incorporated into the topsoil and (b) permanent soil cover (PSC) with one grass-clover mixture, which was harvested and thus not incorporated into the soil. Soil samples at three different soil depths (0–5, 5–10 and 10–20 cm) were sampled four times in high spatial resolution and analysed using a combined approach of visible near infrared spectroscopy and conventional lab methods. Differences between the sampling times and field sites were stronger than effects of different treatments. For soil organic carbon (SOC), no significant difference was measured between treatments in 0–20 cm soil depth. Only when analysed per depth segment, the PSC treatment showed significantly higher SOC increase in 5–10 cm soil depth than the DCC treatment. This could be due to the longer soil cover and thereby associated longer root growth period in the PSC treatment, leading to higher below ground C inputs than in the DCC treatment. On the other hand, the DCC treatment showed generally higher increases in permanganate oxidizable carbon stocks (0–5 cm), microbial C (0–10 cm), microbial N (0–10 cm) and mineral N (0–10 cm) than the PSC treatment. We conclude that maximizing cover crop above ground biomass input by planting two cover crops (DCC) benefitted soil microorganisms on most fields but was less beneficial on SOC than permanent soil cover (PSC) in 5–10 cm soil depth.

在两种主要作物之间种植覆盖作物是为了减少裸露休耕期。在高度多样化的作物轮作中,两种主要作物之间的间歇期长短随时间变化很大,因此每年的覆盖种植管理也不尽相同。因此,长期田间试验的作用有限,因为同样的覆盖种植方法在几年中只会出现一次。这就更需要更好地确定不同覆盖种植策略对土壤特性的直接影响。这项研究评估了两种覆盖种植策略,并监测了瑞士东部六块田地在冬小麦收割到春播作物播种的 9 个月期间几种土壤特性的时间发展情况。测试的两种策略是:(a)双层覆盖种植(DCC),即随后种植两种覆盖作物混合物,并将其浅层(3 厘米)纳入表土;(b)永久性土壤覆盖(PSC),即种植一种草-三叶草混合物,收割后不纳入土壤。对三个不同土壤深度(0-5、5-10 和 10-20 厘米)的土壤样本进行了四次高空间分辨率采样,并采用可见近红外光谱和传统实验室方法进行了综合分析。采样时间和实地地点之间的差异比不同处理方法的影响更大。就土壤有机碳(SOC)而言,在 0-20 厘米的土壤深度,不同处理之间没有测得显著差异。只有在对每个深度段进行分析时,PSC 处理在 5-10 厘米土壤深度的 SOC 增幅明显高于 DCC 处理。这可能是由于 PSC 处理的土壤覆盖时间更长,因此根系生长期也更长,导致地下 C 输入量高于 DCC 处理。另一方面,高锰酸盐氧化碳储量(0-5 厘米)、微生物碳储量(0-10 厘米)、微生物氮储量(0-10 厘米)和矿质氮储量(0-10 厘米)在 DCC 处理中的增幅普遍高于 PSC 处理。我们的结论是,通过种植两种覆盖作物(DCC)最大限度地增加覆盖作物的地上生物量输入,有利于大多数田块的土壤微生物,但与 5-10 厘米土壤深度的永久性土壤覆盖(PSC)相比,对 SOC 的益处较小。
{"title":"Cover cropping in organic reduced tillage systems: Maximizing soil cover or plant above ground biomass input?","authors":"Simon Oberholzer,&nbsp;Klaus A. Jarosch,&nbsp;Nadine Harder,&nbsp;Markus Steffens,&nbsp;Chinwe Ifejika Speranza","doi":"10.1111/ejss.70012","DOIUrl":"10.1111/ejss.70012","url":null,"abstract":"<p>Cover crops are grown between two main crops to reduce periods of bare fallow. In highly diverse crop rotations, the lengths of break periods between two main crops vary highly over time and consequently the cover cropping management differs from year to year. Long-term field trials are thus of limited use because the same cover cropping approach only appears once in several years. This increases the need to better determine the immediate effects of different cover cropping strategies on soil properties. This study evaluated two cover cropping strategies and monitored the temporal development of several soil properties on six fields in Eastern Switzerland in the 9 months period between harvest of winter wheat and sowing of spring crops. The two tested strategies were (a) double cover cropping (DCC) where two cover crops mixtures were grown subsequently and shallowly (3 cm) incorporated into the topsoil and (b) permanent soil cover (PSC) with one grass-clover mixture, which was harvested and thus not incorporated into the soil. Soil samples at three different soil depths (0–5, 5–10 and 10–20 cm) were sampled four times in high spatial resolution and analysed using a combined approach of visible near infrared spectroscopy and conventional lab methods. Differences between the sampling times and field sites were stronger than effects of different treatments. For soil organic carbon (SOC), no significant difference was measured between treatments in 0–20 cm soil depth. Only when analysed per depth segment, the PSC treatment showed significantly higher SOC increase in 5–10 cm soil depth than the DCC treatment. This could be due to the longer soil cover and thereby associated longer root growth period in the PSC treatment, leading to higher below ground C inputs than in the DCC treatment. On the other hand, the DCC treatment showed generally higher increases in permanganate oxidizable carbon stocks (0–5 cm), microbial C (0–10 cm), microbial N (0–10 cm) and mineral N (0–10 cm) than the PSC treatment. We conclude that maximizing cover crop above ground biomass input by planting two cover crops (DCC) benefitted soil microorganisms on most fields but was less beneficial on SOC than permanent soil cover (PSC) in 5–10 cm soil depth.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 6","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
No relationship between outputs of simple humus balance calculators (VDLUFA and STAND) and soil organic carbon trends 简单腐殖质平衡计算器(VDLUFA 和 STAND)的输出结果与土壤有机碳趋势之间没有关系
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-11-08 DOI: 10.1111/ejss.70007
Shauna-kay Rainford, Jens Leifeld, Sonja Siegl, Steffen Hagenbucher, Judith Riedel, Thomas Gross, Urs Niggli, Sonja G. Keel

Simple humus balance calculators were developed for farmers and consultants to determine the best crop rotation and amount of organic fertilizer required to improve soil quality and prevent nutrient leaching in croplands. Although the potential of these tools to infer the impact of different agricultural practices on soil organic carbon (SOC) dynamics in croplands is not well studied, they have been integrated in several farm-level climate or environmental impact assessment calculators. Here we examine the correlation between humus balance values estimated with two different tools developed in Germany/Central Europe and observed changes in SOC content at 14 long-term sites in Switzerland. The first tool was developed by the Association of German Agricultural Investigation and Research Institutes and is referred to as the VDLUFA. The humus balance calculator STAND is a descendent of the VDLUFA that accounts for pedoclimatic factors in Central Europe. Crop rotations were distinguished based on cultivation practice, whereby those with mixed fertilization were supplied with mineral fertilizer alone and in combination with organic materials, while those with organic fertilization include unfertilized and organic fertilizer treatments. An analysis of 133 short-term observations (i.e. individual crop rotations of five and 6-year duration) and 26 long-term observations (i.e. several crop rotations with a total duration of ≥10 years) showed that humus balance values (kg C ha−1 year−1) of short-term crop rotations were not or only poorly correlated with the observed change in SOC content (%) (R2 = 0.06 in STAND and R2 = 0.05 in VDLUFA for crop rotations with organic fertilization, and R2 < 0.01 for crop rotations with mixed fertilization). The correlation did not improve when the humus balance values of long-term observations with mixed fertilization were compared with decadal SOC development (R2 = 0.04 for STAND and R2 = 0.06 for the VDLUFA). Stronger correlations were found only for long-term observations with organic fertilization (R2 = 0.68 for STAND and R2 = 0.64 for the VDLUFA). These findings underline that while the studied humus balance calculators are able to distinguish the effect of different fertilizers (organic vs. mineral) on a farm's humus supply on the longer term, neither are suited for predicting SOC trends over single crop rotations. Although this study was carried out in Switzerland, the results should apply to any region with temperate climate and similar soil properties.

为农民和顾问开发了简单的腐殖质平衡计算器,以确定最佳轮作方式和所需有机肥的用量,从而改善土壤质量,防止农田养分流失。虽然这些工具在推断不同农业实践对耕地土壤有机碳(SOC)动态影响方面的潜力还没有得到很好的研究,但它们已被集成到几个农场级气候或环境影响评估计算器中。在此,我们研究了德国/中欧开发的两种不同工具估算的腐殖质平衡值与瑞士 14 个长期观测点观测到的 SOC 含量变化之间的相关性。第一种工具由德国农业调查和研究所协会开发,被称为 VDLUFA。腐殖质平衡计算器 STAND 是 VDLUFA 的后继工具,考虑了中欧的气候因素。根据耕作方式对轮作进行了区分,其中混合施肥的轮作单独使用矿物肥料或与有机肥料结合使用,而有机施肥的轮作则包括未施肥和有机肥料处理。对 133 个短期观测数据(即为期 5 年和 6 年的单个作物轮作)和 26 个长期观测数据(即多个作物轮作,总计为期 5 年和 6 年)进行了分析。分析表明,短期轮作的腐殖质平衡值(千克碳公顷-1 年-1)与观测到的 SOC 含量变化(%)没有相关性或相关性很低(施用有机肥的轮作在 STAND 中的 R2 = 0.06,在 VDLUFA 中的 R2 = 0.05;施用混合肥的轮作的 R2 < 0.01)。如果将混合施肥长期观测的腐殖质平衡值与十年 SOC 变化情况进行比较,相关性并没有改善(STAND 的 R2 = 0.04,VDLUFA 的 R2 = 0.06)。只有施用有机肥的长期观测结果才具有更强的相关性(STAND 的 R2 = 0.68,VDLUFA 的 R2 = 0.64)。这些发现强调,虽然所研究的腐殖质平衡计算器能够区分不同肥料(有机肥与矿物质肥)对农场腐殖质供应的长期影响,但都不适合预测单一作物轮作的 SOC 趋势。虽然这项研究是在瑞士进行的,但其结果应适用于任何具有温带气候和类似土壤特性的地区。
{"title":"No relationship between outputs of simple humus balance calculators (VDLUFA and STAND) and soil organic carbon trends","authors":"Shauna-kay Rainford,&nbsp;Jens Leifeld,&nbsp;Sonja Siegl,&nbsp;Steffen Hagenbucher,&nbsp;Judith Riedel,&nbsp;Thomas Gross,&nbsp;Urs Niggli,&nbsp;Sonja G. Keel","doi":"10.1111/ejss.70007","DOIUrl":"10.1111/ejss.70007","url":null,"abstract":"<p>Simple humus balance calculators were developed for farmers and consultants to determine the best crop rotation and amount of organic fertilizer required to improve soil quality and prevent nutrient leaching in croplands. Although the potential of these tools to infer the impact of different agricultural practices on soil organic carbon (SOC) dynamics in croplands is not well studied, they have been integrated in several farm-level climate or environmental impact assessment calculators. Here we examine the correlation between humus balance values estimated with two different tools developed in Germany/Central Europe and observed changes in SOC content at 14 long-term sites in Switzerland. The first tool was developed by the Association of German Agricultural Investigation and Research Institutes and is referred to as the VDLUFA. The humus balance calculator STAND is a descendent of the VDLUFA that accounts for pedoclimatic factors in Central Europe. Crop rotations were distinguished based on cultivation practice, whereby those with mixed fertilization were supplied with mineral fertilizer alone and in combination with organic materials, while those with organic fertilization include unfertilized and organic fertilizer treatments. An analysis of 133 short-term observations (i.e. individual crop rotations of five and 6-year duration) and 26 long-term observations (i.e. several crop rotations with a total duration of ≥10 years) showed that humus balance values (kg C ha<sup>−1</sup> year<sup>−1</sup>) of short-term crop rotations were not or only poorly correlated with the observed change in SOC content (%) (<i>R</i><sup>2</sup> = 0.06 in STAND and <i>R</i><sup>2</sup> = 0.05 in VDLUFA for crop rotations with organic fertilization, and <i>R</i><sup>2</sup> &lt; 0.01 for crop rotations with mixed fertilization). The correlation did not improve when the humus balance values of long-term observations with mixed fertilization were compared with decadal SOC development (<i>R</i><sup>2</sup> = 0.04 for STAND and <i>R</i><sup>2</sup> = 0.06 for the VDLUFA). Stronger correlations were found only for long-term observations with organic fertilization (<i>R</i><sup>2</sup> = 0.68 for STAND and <i>R</i><sup>2</sup> = 0.64 for the VDLUFA). These findings underline that while the studied humus balance calculators are able to distinguish the effect of different fertilizers (organic vs. mineral) on a farm's humus supply on the longer term, neither are suited for predicting SOC trends over single crop rotations. Although this study was carried out in Switzerland, the results should apply to any region with temperate climate and similar soil properties.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 6","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A GSD-driven approach to deriving stochastic soil strength parameters under hybrid machine learning models 在混合机器学习模型下推导随机土壤强度参数的 GSD 驱动方法
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-11-08 DOI: 10.1111/ejss.70009
Hu Jiang, Yong Li, Qiang Zou, Jun Zhang, Junfang Cui, Jianyi Cheng, Bin Zhou, Siyu Chen, Wentao Zhou, Hongkun Yao

The quantification of soil strength parameters is a crucial prerequisite for constructing physical models related to hydro-geophysical processes. However, due to ignoring soil spatial variability at different scales, traditional parameter assignment strategies, such as assigning values depending on land use classification or other classification systems, as well as those extrapolation and interpolation methods, are insufficient for physical process modelling. This work addressed this deficiency by proposing a method to derive stochastic soil strength parameters under hybrid machine learning (ML) models, taking into account the grain-size distribution (GSD) of soil with scaling invariance. The nonlinear connection between GSD parameters (derived from GSD curves, such as μ and Dc), moisture content, and soil shear strength parameters was fitted by the suggested hybrid ML model. An analysis of a case study revealed that: (i) the Multi-layer Perceptron optimized by the African Vulture Optimization Algorithm (AVOA) algorithm performs the best and can estimate the shear strength parameters of soil mass on vegetated slopes; (ii) all the selected ML models showed significant improvements in predictive performance after optimization with the AVOA, with R2 scores increasing by 24.72% for Support Vector Regressor, 34.04% for eXtreme Gradient Boosting, and 35.53% for Multi-layer Perceptron; and (iii) soil cohesion has an increasing relationship with the GSD parameter μ, while soil internal friction angle has a negative correlation with the grain-size parameter Dc. The proposed methodology can give predictions of soil shear strength distribution parameters, providing parameter support for the physical modelling of surface process dynamics.

土壤强度参数的量化是构建与水文地球物理过程相关的物理模型的重要前提。然而,由于忽略了不同尺度的土壤空间变异性,传统的参数赋值策略,如根据土地利用分类或其他分类系统赋值,以及那些外推法和内插法,都不足以用于物理过程建模。本研究针对这一不足,提出了一种在混合机器学习(ML)模型下推导随机土壤强度参数的方法,其中考虑到了具有比例不变性的土壤粒度分布(GSD)。建议的混合 ML 模型拟合了 GSD 参数(从 GSD 曲线得出,如 μ 和 Dc)、含水量和土壤抗剪强度参数之间的非线性联系。案例研究分析表明(i) 经非洲秃鹫优化算法(AVOA)优化的多层感知器性能最佳,可以估算植被边坡土体的剪切强度参数;(ii) 经 AVOA 优化后,所有选定的 ML 模型的预测性能都有显著提高,R2 分数提高了 24.(iii) 土壤内聚力与 GSD 参数 μ 呈递增关系,而土壤内摩擦角与粒度参数 Dc 呈负相关关系。所提出的方法可预测土壤剪切强度分布参数,为地表过程动力学物理建模提供参数支持。
{"title":"A GSD-driven approach to deriving stochastic soil strength parameters under hybrid machine learning models","authors":"Hu Jiang,&nbsp;Yong Li,&nbsp;Qiang Zou,&nbsp;Jun Zhang,&nbsp;Junfang Cui,&nbsp;Jianyi Cheng,&nbsp;Bin Zhou,&nbsp;Siyu Chen,&nbsp;Wentao Zhou,&nbsp;Hongkun Yao","doi":"10.1111/ejss.70009","DOIUrl":"10.1111/ejss.70009","url":null,"abstract":"<p>The quantification of soil strength parameters is a crucial prerequisite for constructing physical models related to hydro-geophysical processes. However, due to ignoring soil spatial variability at different scales, traditional parameter assignment strategies, such as assigning values depending on land use classification or other classification systems, as well as those extrapolation and interpolation methods, are insufficient for physical process modelling. This work addressed this deficiency by proposing a method to derive stochastic soil strength parameters under hybrid machine learning (ML) models, taking into account the grain-size distribution (GSD) of soil with scaling invariance. The nonlinear connection between GSD parameters (derived from GSD curves, such as <i>μ</i> and <i>D</i><sub>c</sub>), moisture content, and soil shear strength parameters was fitted by the suggested hybrid ML model. An analysis of a case study revealed that: (i) the Multi-layer Perceptron optimized by the African Vulture Optimization Algorithm (AVOA) algorithm performs the best and can estimate the shear strength parameters of soil mass on vegetated slopes; (ii) all the selected ML models showed significant improvements in predictive performance after optimization with the AVOA, with <i>R</i><sup>2</sup> scores increasing by 24.72% for Support Vector Regressor, 34.04% for eXtreme Gradient Boosting, and 35.53% for Multi-layer Perceptron; and (iii) soil cohesion has an increasing relationship with the GSD parameter <i>μ</i>, while soil internal friction angle has a negative correlation with the grain-size parameter <i>D</i><sub>c</sub>. The proposed methodology can give predictions of soil shear strength distribution parameters, providing parameter support for the physical modelling of surface process dynamics.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 6","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Further reduction in soil bacterial diversity under severe acidification in European temperate forests 欧洲温带森林严重酸化条件下土壤细菌多样性的进一步减少
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-11-08 DOI: 10.1111/ejss.70005
Mélody Rousseau, Andjin Siegenthaler, Andrew K. Skidmore, G. Arjen de Groot, Ivo Laros

Despite a decrease in industrial nitrogen and sulfur deposition over recent decades, soil acidification remains a persistent challenge to European forest health, especially in regions of intense agriculture and urbanisation. Using topsoil eDNA metabarcoding and functional annotations from a sample of 49 plots (each 30 × 30 m) located in The Netherlands and Germany, we investigated the effect of severe acidification on bacterial taxonomic diversity under different forest types and explored potential functional implications for nutrient cycling. Furthermore, we assessed which soil parameters known to influence soil bacterial communities affect these acidophilic communities. Here, we are the first to demonstrate under natural conditions that soil bacterial diversity in extremely acidic soils (pH <4.5) continues to decline similarly across forest types as pH further decreases under intensifying human activity. Our results confirmed pH as the key driver of soil bacterial communities, even in extremely acidic soils. Ongoing severe acidification continues to reduce bacterial communities, favouring taxa adapted to extreme acidity and primarily involved in recalcitrant carbon-degradation compounds (e.g. cellulolysis potential = 0.78%–9.99%) while simultaneously diminishing taxa associated with nitrogen cycling (e.g. fixation potential = 6.72%–0.00%). Altogether, our findings indicate a further decline in bacterial diversity in already extremely acidic soils, likely disrupting nutrient cycling through changes in immobilisation and mineralisation processes. Our study highlights the continuous acidification of European temperate forests to extremely low pH levels, further disrupting forest ecosystem functioning. The significant reduction in bacterial diversity under such a severe acidification gradient, as demonstrated here, underscores the necessity to include severely acidified forests in conservation programmes and monitoring to prevent further degradation of European soils beyond repair.

尽管近几十年来工业氮和硫的沉积有所减少,但土壤酸化仍然是欧洲森林健康面临的一个长期挑战,尤其是在农业和城市化密集的地区。通过对荷兰和德国的 49 个地块(每个地块 30 × 30 米)进行表土 eDNA 代谢编码和功能注释,我们研究了严重酸化对不同森林类型下细菌分类多样性的影响,并探讨了其对养分循环的潜在功能影响。此外,我们还评估了哪些已知会影响土壤细菌群落的土壤参数会影响这些嗜酸性群落。在这里,我们首次证明了在自然条件下,随着人类活动的加剧,pH 值进一步降低,极酸性土壤(pH 值为 4.5)中的土壤细菌多样性在不同森林类型中也同样持续下降。我们的研究结果证实,pH 值是土壤细菌群落的关键驱动因素,即使在极酸性土壤中也是如此。持续的严重酸化继续减少细菌群落,有利于适应极端酸性并主要参与难降解碳化合物的类群(如纤维素分解潜力=0.78%-9.99%),同时减少与氮循环相关的类群(如固定潜力=6.72%-0.00%)。总之,我们的研究结果表明,在已经极度酸化的土壤中,细菌多样性进一步下降,很可能会通过固定化和矿化过程的变化破坏养分循环。我们的研究强调了欧洲温带森林持续酸化,pH 值达到极低的水平,进一步破坏了森林生态系统的功能。在如此严重的酸化梯度下,细菌多样性明显减少,这突出表明有必要将严重酸化的森林纳入保护计划和监测范围,以防止欧洲土壤进一步退化,无法修复。
{"title":"Further reduction in soil bacterial diversity under severe acidification in European temperate forests","authors":"Mélody Rousseau,&nbsp;Andjin Siegenthaler,&nbsp;Andrew K. Skidmore,&nbsp;G. Arjen de Groot,&nbsp;Ivo Laros","doi":"10.1111/ejss.70005","DOIUrl":"10.1111/ejss.70005","url":null,"abstract":"<p>Despite a decrease in industrial nitrogen and sulfur deposition over recent decades, soil acidification remains a persistent challenge to European forest health, especially in regions of intense agriculture and urbanisation. Using topsoil eDNA metabarcoding and functional annotations from a sample of 49 plots (each 30 × 30 m) located in The Netherlands and Germany, we investigated the effect of severe acidification on bacterial taxonomic diversity under different forest types and explored potential functional implications for nutrient cycling. Furthermore, we assessed which soil parameters known to influence soil bacterial communities affect these acidophilic communities. Here, we are the first to demonstrate under natural conditions that soil bacterial diversity in extremely acidic soils (pH &lt;4.5) continues to decline similarly across forest types as pH further decreases under intensifying human activity. Our results confirmed pH as the key driver of soil bacterial communities, even in extremely acidic soils. Ongoing severe acidification continues to reduce bacterial communities, favouring taxa adapted to extreme acidity and primarily involved in recalcitrant carbon-degradation compounds (e.g. cellulolysis potential = 0.78%–9.99%) while simultaneously diminishing taxa associated with nitrogen cycling (e.g. fixation potential = 6.72%–0.00%). Altogether, our findings indicate a further decline in bacterial diversity in already extremely acidic soils, likely disrupting nutrient cycling through changes in immobilisation and mineralisation processes. Our study highlights the continuous acidification of European temperate forests to extremely low pH levels, further disrupting forest ecosystem functioning. The significant reduction in bacterial diversity under such a severe acidification gradient, as demonstrated here, underscores the necessity to include severely acidified forests in conservation programmes and monitoring to prevent further degradation of European soils beyond repair.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 6","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of brackish water inundation on temperate coastal acid sulfate soils under different vegetation types 不同植被类型下咸水淹没对温带沿海酸性硫酸盐土壤的影响
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-11-05 DOI: 10.1111/ejss.70008
Chang Xu, Rahul Ram, Vanessa N. L. Wong

Coastal wetland soils are frequently underlain by sulfidic materials. Sea level fluctuations can lead to oxidation of sulfidic materials in acid sulfate soils (ASS) and increased acidity which mobilises trace metals when water levels are low, and inundation of coastal wetland soils and reformation of sulfidic materials when water levels are high. We measured the effect of surface water level fluctuations in soils from coastal wetland sites under four different vegetation types: Apium gravedens (AG), Leptospermum lanigerum (LL), Phragmites australis (PA) and Paspalum distichum (PD) on an estuarine floodplain in southern Australia. We assessed effects of fluctuating water levels on reduced inorganic sulfur (RIS) in terms of acid volatile sulfide (AVS), chromium reducible sulfur (CRS) and trace metals (Fe, Al, Mn, Zn, Ni). Intact soil cores were incubated under dry, flooded and wet–dry cycle treatments of 14 days for a total of 56 days. The flooded treatment increased RIS concentrations in most depths in the AG, PA and PD sites. Lower CRS concentrations occurred in all sites in the dry treatment due to oxidation of sulfidic materials when the surface layer was exposed to lower water levels. CRS was positively correlated with SOC in all treatments. The highest net acidity occurred in the dry treatment and lowest occurred in the flooded treatment in most sites. Inundation with seawater caused SO42− reduction and decreased soluble Fe in the PA and PD sites. General decreases in Al, Zn and Ni concentrations in flooded treatments may have been due to adsorption onto colloids or co-precipitation with slight increases in pH. SO42− concentrations decreased in the LL, PA and PD sites in the flooded treatment due to reformation of pyrite. In general, accumulation of RIS in soils under different vegetation types following brackish water inundation varied according to vegetation type, which may be linked to differences in organic material input and particle size distribution. Geochemical characteristics reflected whether oxidation or reduction processes dominated at each site in the wet–dry cycle treatments, with oxidation dominating in the LL and PA sites and reduction dominating in the AG and PD sites. This is likely due to more readily decomposable organic matter forming sulfidic materials during short periods of inundation.

沿海湿地土壤的下层经常是硫酸盐物质。当水位较低时,海平面波动会导致酸性硫酸盐土壤(ASS)中的硫化物质氧化,酸度增加,从而释放痕量金属;当水位较高时,沿海湿地土壤被淹没,硫化物质重新形成。我们测量了地表水位波动对四种不同植被类型下沿海湿地土壤的影响:我们测量了澳大利亚南部河口冲积平原上 Apium gravedens (AG)、Leptospermum lanigerum (LL)、Phragmites australis (PA) 和 Paspalum distichum (PD) 四种不同植被类型的沿海湿地土壤的地表水位波动影响。我们评估了水位波动对还原性无机硫(RIS)的影响,包括酸性挥发性硫化物(AVS)、铬还原性硫(CRS)和痕量金属(铁、铝、锰、锌、镍)。在干燥、淹没和干湿循环处理 14 天的情况下,对完整的土壤核心进行培养,共 56 天。在 AG、PA 和 PD 地点,淹水处理增加了大部分深度的 RIS 浓度。由于表层暴露在较低水位时硫化物被氧化,因此在干燥处理中所有地点的 CRS 浓度都较低。在所有处理中,CRS 与 SOC 呈正相关。在大多数地点,干燥处理的净酸度最高,而淹没处理的净酸度最低。在 PA 和 PD 地点,海水淹没导致 SO42- 减少,可溶性铁降低。淹没处理中铝、锌和镍浓度的普遍下降可能是由于胶体吸附或共沉淀以及 pH 值的轻微升高。在淹没处理中,LL、PA 和 PD 位点的 SO42- 浓度降低,原因是黄铁矿发生了重整。总体而言,不同植被类型下的土壤在咸水淹没后的 RIS 积累因植被类型而异,这可能与有机物质输入量和颗粒大小分布的差异有关。地球化学特征反映了在干湿循环处理过程中,每个地点的氧化过程还是还原过程占主导地位,在LL和PA地点,氧化过程占主导地位,而在AG和PD地点,还原过程占主导地位。这可能是由于更容易分解的有机物在短时间淹没期间形成了硫化物。
{"title":"Effect of brackish water inundation on temperate coastal acid sulfate soils under different vegetation types","authors":"Chang Xu,&nbsp;Rahul Ram,&nbsp;Vanessa N. L. Wong","doi":"10.1111/ejss.70008","DOIUrl":"https://doi.org/10.1111/ejss.70008","url":null,"abstract":"<p>Coastal wetland soils are frequently underlain by sulfidic materials. Sea level fluctuations can lead to oxidation of sulfidic materials in acid sulfate soils (ASS) and increased acidity which mobilises trace metals when water levels are low, and inundation of coastal wetland soils and reformation of sulfidic materials when water levels are high. We measured the effect of surface water level fluctuations in soils from coastal wetland sites under four different vegetation types: <i>Apium gravedens</i> (AG), <i>Leptospermum lanigerum</i> (LL), <i>Phragmites australis</i> (PA) and <i>Paspalum distichum</i> (PD) on an estuarine floodplain in southern Australia. We assessed effects of fluctuating water levels on reduced inorganic sulfur (RIS) in terms of acid volatile sulfide (AVS), chromium reducible sulfur (CRS) and trace metals (Fe, Al, Mn, Zn, Ni). Intact soil cores were incubated under dry, flooded and wet–dry cycle treatments of 14 days for a total of 56 days. The flooded treatment increased RIS concentrations in most depths in the AG, PA and PD sites. Lower CRS concentrations occurred in all sites in the dry treatment due to oxidation of sulfidic materials when the surface layer was exposed to lower water levels. CRS was positively correlated with SOC in all treatments. The highest net acidity occurred in the dry treatment and lowest occurred in the flooded treatment in most sites. Inundation with seawater caused SO<sub>4</sub><sup>2−</sup> reduction and decreased soluble Fe in the PA and PD sites. General decreases in Al, Zn and Ni concentrations in flooded treatments may have been due to adsorption onto colloids or co-precipitation with slight increases in pH. SO<sub>4</sub><sup>2−</sup> concentrations decreased in the LL, PA and PD sites in the flooded treatment due to reformation of pyrite. In general, accumulation of RIS in soils under different vegetation types following brackish water inundation varied according to vegetation type, which may be linked to differences in organic material input and particle size distribution. Geochemical characteristics reflected whether oxidation or reduction processes dominated at each site in the wet–dry cycle treatments, with oxidation dominating in the LL and PA sites and reduction dominating in the AG and PD sites. This is likely due to more readily decomposable organic matter forming sulfidic materials during short periods of inundation.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 6","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative characterization of bidirectional reflectance distribution of mine soil using physical models 利用物理模型对矿山土壤的双向反射率分布进行定量分析
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-11-05 DOI: 10.1111/ejss.70003
Haimei Lei, Nisha Bao, Sihan Peng, Xiaoyan Yang, Zhiwei Lu

The non-Lambertian surface features varying particle size and discrete distribution, resulting in reflectance to be unevenly distributed in different directions. Mine soil with a high content of coarse particles and non-uniform particle distribution exhibits significant non-Lambertian properties on its surface. Consequently, not only vertical observation of the reflectance spectra but also multi-angle reflectance spectra are related to the physical and chemical properties (e.g. soil organic carbon, moisture content and particle size) of mine soil. Understanding the bidirectional reflectance distribution of mine soil with various particle sizes is essential for accurately estimating soil properties using spectroscopy. Current estimations of soil properties using spectroscopy mainly focus on vertical observations, overlooking the bidirectional reflectance characteristics. This study reports the bidirectional reflectance distribution of mine soil with various particle sizes. Furthermore, the performance of different bidirectional reflectance distribution function (BRDF) models in simulating the bidirectional reflectance of mine soil with various particle sizes was evaluated. Soil samples from three typical mine areas were collected and sieved into seven particle sizes ranging from 25 to 3500 μm. The bidirectional reflectance in the Vis–NIR wavelength region was measured in a laboratory using the Northeastern University bidirectional reflectance measurement system. The performance of five BRDF models (isotropic multiple scattering approximation, anisotropic multiple scattering approximation, H2008, H2012 and SOILSPECT) in modelling the bidirectional reflectance distribution of mine soil with different particle sizes was compared. Sobol's sensitivity indices were used to quantify the contributions of the parameters in the BRDF models. The results showed that (1) small mine soil particles (25 μm) exhibited greater reflectance than large particles (3500 μm). Large particles (3500 μm) exhibited backward scattering, whereas small particles (25 μm) exhibited extremely forward scattering characteristics because of the high silicon dioxide content; (2) the SOILSPECT model outperformed the other BRDF models in simulating the bidirectional reflectance of mine soil and had the smallest root mean square error (0.004–0.04); (3) the single-scattering albedo (ɷ) parameter had the greatest contribution in the SOILSPECT model. Four parameters in the phase function (b, b′, c and c′) effectively indicated the scattering behaviour of mine soil with different particle sizes. These findings improve our understanding of the scattering characteristics of mine soil with various particle sizes and can be used to improve the accuracy of extracting particle size and other soil properties from mine soil.

非朗伯表面的特点是颗粒大小不一,分布离散,导致反射率在不同方向分布不均。粗颗粒含量高且颗粒分布不均匀的矿山土壤,其表面具有明显的非兰伯特特性。因此,不仅要垂直观测反射光谱,还要多角度观测反射光谱,这与矿山土壤的物理和化学特性(如土壤有机碳、含水量和颗粒大小)有关。了解不同粒径矿山土壤的双向反射率分布,对于利用光谱准确估算土壤特性至关重要。目前利用光谱估算土壤特性的方法主要侧重于垂直观测,忽略了双向反射特性。本研究报告了不同粒径矿山土壤的双向反射率分布。此外,还评估了不同双向反射分布函数(BRDF)模型在模拟不同粒径矿山土壤双向反射率方面的性能。研究人员从三个典型矿区采集了土壤样本,并将其筛分为 25 至 3500 μm 的七种粒径。在实验室中使用东北大学双向反射率测量系统测量了可见光-近红外波长区域的双向反射率。比较了五种 BRDF 模型(各向同性多次散射近似、各向异性多次散射近似、H2008、H2012 和 SOILSPECT)在模拟不同粒径矿山土壤双向反射率分布时的性能。Sobol 敏感度指数用于量化 BRDF 模型中各参数的贡献。结果表明:(1) 矿山土壤小颗粒(25 μm)的反射率高于大颗粒(3500 μm)。大颗粒(3500 μm)表现为后向散射,而小颗粒(25 μm)由于二氧化硅含量高,表现出极强的前向散射特性;(2) SOILSPECT 模型在模拟矿山土壤双向反射率方面优于其他 BRDF 模型,且均方根误差(0.004-0.04)最小;(3) 在 SOILSPECT 模型中,单散射反照率(ɷ)参数的作用最大。相位函数中的四个参数(b、b′、c 和 c′)有效地显示了不同粒径矿山土壤的散射行为。这些发现加深了我们对不同粒径矿山土壤散射特性的理解,可用于提高从矿山土壤中提取粒径和其他土壤特性的准确性。
{"title":"Quantitative characterization of bidirectional reflectance distribution of mine soil using physical models","authors":"Haimei Lei,&nbsp;Nisha Bao,&nbsp;Sihan Peng,&nbsp;Xiaoyan Yang,&nbsp;Zhiwei Lu","doi":"10.1111/ejss.70003","DOIUrl":"10.1111/ejss.70003","url":null,"abstract":"<p>The non-Lambertian surface features varying particle size and discrete distribution, resulting in reflectance to be unevenly distributed in different directions. Mine soil with a high content of coarse particles and non-uniform particle distribution exhibits significant non-Lambertian properties on its surface. Consequently, not only vertical observation of the reflectance spectra but also multi-angle reflectance spectra are related to the physical and chemical properties (e.g. soil organic carbon, moisture content and particle size) of mine soil. Understanding the bidirectional reflectance distribution of mine soil with various particle sizes is essential for accurately estimating soil properties using spectroscopy. Current estimations of soil properties using spectroscopy mainly focus on vertical observations, overlooking the bidirectional reflectance characteristics. This study reports the bidirectional reflectance distribution of mine soil with various particle sizes. Furthermore, the performance of different bidirectional reflectance distribution function (BRDF) models in simulating the bidirectional reflectance of mine soil with various particle sizes was evaluated. Soil samples from three typical mine areas were collected and sieved into seven particle sizes ranging from 25 to 3500 μm. The bidirectional reflectance in the Vis–NIR wavelength region was measured in a laboratory using the Northeastern University bidirectional reflectance measurement system. The performance of five BRDF models (isotropic multiple scattering approximation, anisotropic multiple scattering approximation, H2008, H2012 and SOILSPECT) in modelling the bidirectional reflectance distribution of mine soil with different particle sizes was compared. Sobol's sensitivity indices were used to quantify the contributions of the parameters in the BRDF models. The results showed that (1) small mine soil particles (25 μm) exhibited greater reflectance than large particles (3500 μm). Large particles (3500 μm) exhibited backward scattering, whereas small particles (25 μm) exhibited extremely forward scattering characteristics because of the high silicon dioxide content; (2) the SOILSPECT model outperformed the other BRDF models in simulating the bidirectional reflectance of mine soil and had the smallest root mean square error (0.004–0.04); (3) the single-scattering albedo (<i>ɷ</i>) parameter had the greatest contribution in the SOILSPECT model. Four parameters in the phase function (<i>b</i>, <i>b</i>′, <i>c</i> and <i>c</i>′) effectively indicated the scattering behaviour of mine soil with different particle sizes. These findings improve our understanding of the scattering characteristics of mine soil with various particle sizes and can be used to improve the accuracy of extracting particle size and other soil properties from mine soil.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 6","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overlooked biocrust impacts on surface soil thermal properties: Evidence from heat-pulse sensing on large volume samples 被忽视的生物群落对表层土壤热特性的影响:大体积样本热脉冲感应的证据
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-11-03 DOI: 10.1111/ejss.70004
Junru Chen, Bo Xiao, Joshua Heitman

Biocrusts are a critical surface cover in global drylands, but knowledge about their influences on surface soil thermal properties are still lacking because it is quite challenging to make accurate thermal property measurements for biocrust layers, which are only millimetres thick. In this study, we repacked biocrust layers (moss- and cyanobacteria-dominated, respectively) that had the same material as the original intact biocrusts but was more homogeneous and thicker. The thermal conductivity (λ), heat capacity (C) and thermal diffusivity (k) of the repacked and intact biocrusts were measured by the heat pulse (HP) technique at different mass water contents (θm) and mass ratios (Wt), and the differences between repacked and intact biocrusts were analysed. Our results show that biocrusts substantially alter the thermal properties of the soil surface. The average λ of moss (0.37 W m−1 K−1) and cyanobacteria biocrusts (0.90 W m−1 K−1) were reduced by 63.0% and 10.3% compared with bare soil (1.00 W m−1 K−1), respectively. Edge effects including heat loss and water evaporation caused the λ and k of the biocrusts to be underestimated, but the C to be overestimated. The differences in thermal properties were significant (p <0.001), except for the differences in thermal conductivity between repacked and intact cyanobacteria biocrusts, which were not significant (p = 0.379). Specifically, in the volumetric water content (θv) range of 0 to 20%, the λ and k of the repacked moss biocrusts were underestimated by 59.1% and 61.8%, respectively, and the C was overestimated by 23.9% compared with the intact moss biocrusts. The λ and k of the repacked cyanobacteria biocrusts were underestimated by 15.8% and 79.2%, respectively, and the C was overestimated by 34.8% compared with the intact cyanobacteria biocrusts at the θv range of 0 to 30%. Typically, this difference increased as the θv rises between repacked and intact biocrusts. Our new measurements provide evidence that the thermal properties of biocrusts were previously misjudged due to the measurement limitations imposed by their limited thickness when measured in situ. Biocrusts are likely more significant in regulating soil heat and temperature in drylands than was previously assumed.

生物簇是全球旱地的重要表层覆盖物,但由于生物簇层只有几毫米厚,要对其进行精确的热属性测量非常困难,因此有关生物簇对表层土壤热属性影响的知识仍然缺乏。在本研究中,我们对生物簇层(分别以苔藓和蓝藻为主)进行了重新包装,其材料与原始完整生物簇层相同,但更均匀、更厚。通过热脉冲(HP)技术测量了不同质量含水量(θm)和质量比(Wt)下重新包装的生物簇和完整生物簇的导热系数(λ)、热容量(C)和热扩散率(k),并分析了重新包装的生物簇和完整生物簇之间的差异。结果表明,生物簇极大地改变了土壤表面的热特性。与裸土(1.00 W m-1 K-1)相比,苔藓(0.37 W m-1 K-1)和蓝藻生物簇(0.90 W m-1 K-1)的平均λ分别降低了 63.0% 和 10.3%。热量损失和水分蒸发等边缘效应导致生物簇的λ和k被低估,但C被高估。除了重新包装的蓝藻生物簇与完整蓝藻生物簇之间的导热系数差异不显著(p = 0.379)外,其他热特性差异均显著(p <0.001)。具体而言,在体积含水量(θv)为0-20%的范围内,与完整的苔藓生物簇相比,重新包装的苔藓生物簇的λ和k分别被低估了59.1%和61.8%,C被高估了23.9%。与完整的蓝藻生物簇相比,在 θv 为 0 至 30% 的范围内,重新组合的蓝藻生物簇的λ 和 k 分别被低估了 15.8% 和 79.2%,C 被高估了 34.8%。通常情况下,随着重新包装的生物簇与完整生物簇之间 θv 值的增加,这一差异也会增大。我们的新测量结果提供了证据,证明生物簇的热特性以前曾被误判,这是因为在原位测量时,生物簇的厚度有限,测量受到限制。生物簇在调节旱地土壤热量和温度方面的作用可能比以前认为的更大。
{"title":"Overlooked biocrust impacts on surface soil thermal properties: Evidence from heat-pulse sensing on large volume samples","authors":"Junru Chen,&nbsp;Bo Xiao,&nbsp;Joshua Heitman","doi":"10.1111/ejss.70004","DOIUrl":"10.1111/ejss.70004","url":null,"abstract":"<p>Biocrusts are a critical surface cover in global drylands, but knowledge about their influences on surface soil thermal properties are still lacking because it is quite challenging to make accurate thermal property measurements for biocrust layers, which are only millimetres thick. In this study, we repacked biocrust layers (moss- and cyanobacteria-dominated, respectively) that had the same material as the original intact biocrusts but was more homogeneous and thicker. The thermal conductivity (<i>λ</i>), heat capacity (<i>C</i>) and thermal diffusivity (<i>k</i>) of the repacked and intact biocrusts were measured by the heat pulse (HP) technique at different mass water contents (<i>θ</i><sub>m</sub>) and mass ratios (<i>W</i><sub>t</sub>), and the differences between repacked and intact biocrusts were analysed. Our results show that biocrusts substantially alter the thermal properties of the soil surface. The average <i>λ</i> of moss (0.37 W m<sup>−1</sup> K<sup>−1</sup>) and cyanobacteria biocrusts (0.90 W m<sup>−1</sup> K<sup>−1</sup>) were reduced by 63.0% and 10.3% compared with bare soil (1.00 W m<sup>−1</sup> K<sup>−1</sup>), respectively. Edge effects including heat loss and water evaporation caused the <i>λ</i> and <i>k</i> of the biocrusts to be underestimated, but the <i>C</i> to be overestimated. The differences in thermal properties were significant (<i>p</i> &lt;0.001), except for the differences in thermal conductivity between repacked and intact cyanobacteria biocrusts, which were not significant (<i>p</i> = 0.379). Specifically, in the volumetric water content (<i>θ</i><sub>v</sub>) range of 0 to 20%, the <i>λ</i> and <i>k</i> of the repacked moss biocrusts were underestimated by 59.1% and 61.8%, respectively, and the <i>C</i> was overestimated by 23.9% compared with the intact moss biocrusts. The <i>λ</i> and <i>k</i> of the repacked cyanobacteria biocrusts were underestimated by 15.8% and 79.2%, respectively, and the <i>C</i> was overestimated by 34.8% compared with the intact cyanobacteria biocrusts at the <i>θ</i><sub>v</sub> range of 0 to 30%. Typically, this difference increased as the <i>θ</i><sub>v</sub> rises between repacked and intact biocrusts. Our new measurements provide evidence that the thermal properties of biocrusts were previously misjudged due to the measurement limitations imposed by their limited thickness when measured in situ. Biocrusts are likely more significant in regulating soil heat and temperature in drylands than was previously assumed.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 6","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Depth-dependent soil phosphorus alteration is independent of 145-year phosphorus balances 随深度变化的土壤磷变化与 145 年磷平衡无关
IF 4 2区 农林科学 Q2 SOIL SCIENCE Pub Date : 2024-10-31 DOI: 10.1111/ejss.70006
Suwei Xu, Yuhei Nakayama, Maia G. Rothman, Andrew J. Margenot

Agricultural management practices can profoundly influence soil phosphorus (P), with effects accumulating over time. To test the overarching hypothesis that soil P pools estimated by sequential fractionation would be altered by long-term agricultural practices, we used an experiment established in 1876 in the north-central US to quantify 145-year impacts of crop rotation (continuous maize [Zea mays L.], maize-soybean [Glycine max L. Merr.] and maize-oat [Avena sativa L.]-alfalfa [Medicago sativa L.]) and 117-year impacts of fertilization (unfertilized and fertilized) with rock phosphate, manure or synthetic fertilizer on soil P fractions at 15 cm intervals across 0–90 cm depth. Fertilization impacts on soil P were mostly limited to the surface (0–30 cm) depth, but extended to 90 cm depth under diverse rotations. Under fertilization, soil total P concentration increased by 51% at 0-30 cm while concomitantly decreasing by 30% at 60–90 cm compared to no fertilization, indicating that vertically stratified surface soil P accumulation and subsoil P depletion can co-occur even under positive P balances. Positive P balances (1222–1494 kg/ha) induced by fertilization enriched inorganic P (Pi) (+39% to 358%) and labile organic P (Po) fractions (+11%) while depleting non-labile Po fractions (−31%), with depletion increasing with the degree of crop diversification. Fertilization had minor impacts on P fractions beyond 30 cm depth, except for acid extractable Pi (HCl-Pi) depletion under continuous maize and maize-soybean rotations (−16% to −78%) and accumulation under maize-oat-alfalfa rotation (+41% to +84%) at 60–90 cm. In contrast, without fertilization, diversifying maize rotations with oat and alfalfa decreased HCl-Pi and residual P (−21% to −57%) but increased non-labile Po fractions (+54%), suggesting potential mining of non-labile Pi pools by deep-rooted legumes under nutrient limitation. The 1–2 orders of magnitude greater changes in stocks of P fractions than stocks of total P emphasize the importance of distinguishing P pools even with operational fractionation to fully capture changes in P cycling beyond total P stocks. Our study revealed that a positive P balance under 117 years of fertilization (i) enriched Pi and labile Po pools but (ii) depleted non-labile Po pools, (iii) largely at 0–30 cm, and (iv) non-labile Po depletion increased with crop diversification under 145-year rotation treatments.

农业管理方法会对土壤中的磷(P)产生深远的影响,这种影响会随着时间的推移而不断累积。为了验证通过顺序分馏法估算的土壤磷库会因长期农业实践而改变这一重要假设,我们使用了 1876 年在美国中北部进行的一项实验,以量化轮作(连作玉米[Zea mays L. ]、玉米-大豆[Glybine max L. Merr. ]和玉米-山羊[Avena mays L. ])145 年的影响。玉米-大豆[Glycine max L. Merr.]和玉米-山羊[Avena sativa L.]-紫花苜蓿[Medicago sativa L.])145 年的轮作影响,以及用磷矿石、粪肥或合成肥料施肥(未施肥和施肥)117 年对 0-90 厘米深度每隔 15 厘米土壤 P 分量的影响。施肥对土壤钾的影响主要局限于表层(0-30 厘米),但在不同的轮作条件下,施肥对土壤钾的影响扩展到 90 厘米深。与不施肥相比,施肥后 0-30 厘米处的土壤总磷浓度增加了 51%,而 60-90 厘米处的土壤总磷浓度同时减少了 30%,这表明即使在正磷平衡的情况下,垂直分层的表层土壤磷积累和底层土壤磷耗竭也会同时发生。施肥引起的正钾平衡(1222-1494 千克/公顷)富集了无机钾(Pi)(+39%-358%)和可溶性有机钾(Po)组分(+11%),同时消耗了非可溶性有机钾组分(-31%),消耗量随作物多样化程度而增加。施肥对 30 厘米深度以外的钾组分影响较小,但在连续玉米和玉米-大豆轮作下,酸提取钾(HCl-Pi)消耗(-16% 至 -78%),而在玉米-山羊-紫花苜蓿轮作下,钾在 60-90 厘米处积累(+41% 至 +84%)。相比之下,在不施肥的情况下,玉米与燕麦和苜蓿的多样化轮作减少了 HCl-Pi 和残余 P(-21% 至 -57%),但增加了非可吸收的 Po 部分(+54%),这表明在养分限制条件下,深根豆科植物可能会开采非可吸收的 Pi 池。钾馏分储量的变化比总钾储量的变化大 1-2 个数量级,这强调了即使进行操作分馏也要区分钾池的重要性,以全面捕捉总钾量以外的钾循环变化。我们的研究表明,在 117 年的施肥条件下,正 P 平衡(i)富集了 Pi 和可溶性 Po 池,但(ii)消耗了非可溶性 Po 池;(iii)主要在 0-30 厘米处;(iv)在 145 年的轮作处理下,非可溶性 Po 的消耗随着作物多样化而增加。
{"title":"Depth-dependent soil phosphorus alteration is independent of 145-year phosphorus balances","authors":"Suwei Xu,&nbsp;Yuhei Nakayama,&nbsp;Maia G. Rothman,&nbsp;Andrew J. Margenot","doi":"10.1111/ejss.70006","DOIUrl":"https://doi.org/10.1111/ejss.70006","url":null,"abstract":"<p>Agricultural management practices can profoundly influence soil phosphorus (P), with effects accumulating over time. To test the overarching hypothesis that soil P pools estimated by sequential fractionation would be altered by long-term agricultural practices, we used an experiment established in 1876 in the north-central US to quantify 145-year impacts of crop rotation (continuous maize [<i>Zea mays</i> L.], maize-soybean [<i>Glycine max</i> L. Merr.] and maize-oat [<i>Avena sativa</i> L.]-alfalfa [<i>Medicago sativa</i> L.]) and 117-year impacts of fertilization (unfertilized and fertilized) with rock phosphate, manure or synthetic fertilizer on soil P fractions at 15 cm intervals across 0–90 cm depth. Fertilization impacts on soil P were mostly limited to the surface (0–30 cm) depth, but extended to 90 cm depth under diverse rotations. Under fertilization, soil total P concentration increased by 51% at 0-30 cm while concomitantly decreasing by 30% at 60–90 cm compared to no fertilization, indicating that vertically stratified surface soil P accumulation and subsoil P depletion can co-occur even under positive P balances. Positive P balances (1222–1494 kg/ha) induced by fertilization enriched inorganic P (P<sub>i</sub>) (+39% to 358%) and labile organic P (P<sub>o</sub>) fractions (+11%) while depleting non-labile P<sub>o</sub> fractions (−31%), with depletion increasing with the degree of crop diversification. Fertilization had minor impacts on P fractions beyond 30 cm depth, except for acid extractable P<sub>i</sub> (HCl-P<sub>i</sub>) depletion under continuous maize and maize-soybean rotations (−16% to −78%) and accumulation under maize-oat-alfalfa rotation (+41% to +84%) at 60–90 cm. In contrast, without fertilization, diversifying maize rotations with oat and alfalfa decreased HCl-P<sub>i</sub> and residual P (−21% to −57%) but increased non-labile P<sub>o</sub> fractions (+54%), suggesting potential mining of non-labile P<sub>i</sub> pools by deep-rooted legumes under nutrient limitation. The 1–2 orders of magnitude greater changes in stocks of P fractions than stocks of total P emphasize the importance of distinguishing P pools even with operational fractionation to fully capture changes in P cycling beyond total P stocks. Our study revealed that a positive P balance under 117 years of fertilization (i) enriched P<sub>i</sub> and labile P<sub>o</sub> pools but (ii) depleted non-labile P<sub>o</sub> pools, (iii) largely at 0–30 cm, and (iv) non-labile P<sub>o</sub> depletion increased with crop diversification under 145-year rotation treatments.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 6","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Soil Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1