{"title":"Quasi-Dirac points in electron-energy spectra of crystals","authors":"Grigorii P. Mikitik","doi":"10.1038/s42005-024-01788-2","DOIUrl":null,"url":null,"abstract":"Specific properties, such as surface Fermi arcs, features of quantum oscillations and of various responses to a magnetic field, distinguish Dirac semimetals from ordinary materials. These properties are determined by Dirac points at which a contact of two electron-energy bands occurs and in the vicinity of which these bands disperse linearly in the quasimomentum. This work shows that almost the same properties are inherent in a wider class of materials in which the Dirac spectrum can have a noticeable gap comparable with the Fermi energy. In other words, the degeneracy of the bands at the point and their linear dispersion are not necessary for the existence of these properties. The only sufficient condition is the following: In the vicinity of such a quasi-Dirac point, the two close bands are well described by a two-band model that takes into account the strong spin-orbit interaction. To illustrate the results, the spectrum of ZrTe5 is considered. This spectrum contains a special quasi-Dirac point, similar to that in bismuth. Dirac semimetals are 3D materials where the conduction and valence bands meet at what are called Dirac points. The author shows that almost all the properties inherent in the Dirac semimetals are exhibited by a wider class of materials that need not have the gapless Dirac points.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01788-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01788-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Specific properties, such as surface Fermi arcs, features of quantum oscillations and of various responses to a magnetic field, distinguish Dirac semimetals from ordinary materials. These properties are determined by Dirac points at which a contact of two electron-energy bands occurs and in the vicinity of which these bands disperse linearly in the quasimomentum. This work shows that almost the same properties are inherent in a wider class of materials in which the Dirac spectrum can have a noticeable gap comparable with the Fermi energy. In other words, the degeneracy of the bands at the point and their linear dispersion are not necessary for the existence of these properties. The only sufficient condition is the following: In the vicinity of such a quasi-Dirac point, the two close bands are well described by a two-band model that takes into account the strong spin-orbit interaction. To illustrate the results, the spectrum of ZrTe5 is considered. This spectrum contains a special quasi-Dirac point, similar to that in bismuth. Dirac semimetals are 3D materials where the conduction and valence bands meet at what are called Dirac points. The author shows that almost all the properties inherent in the Dirac semimetals are exhibited by a wider class of materials that need not have the gapless Dirac points.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.