{"title":"Ultrafast Four‐Wave Mixing Phase‐Matched by Transient Nonlinear Phase Modulation in a MAPbBr3 Single Crystal","authors":"Jiahui Ren, Xinping Zhang","doi":"10.1002/lpor.202401021","DOIUrl":null,"url":null,"abstract":"A degenerated four‐wave‐mixing (FWM) process in single‐crystal (CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>)PbBr<jats:sub>3</jats:sub> (MAPbBr<jats:sub>3</jats:sub>) is reported, where 150‐fs laser pulses at 1.33 µm are employed as the pump. Two pump photons interact with a single crystal, producing another two photons with higher and lower energies, respectively. One of the FWM‐generation sidebands is tuned from ∼1.23 to 1.21 µm and the other from ∼1.43 to 1.48 µm for the center wavelength, as the pump fluence is increased from 2.6 to 11.69 mJ cm<jats:sup>−2</jats:sup>. The self‐phase modulation induced by the strong pump pulses through the optical Kerr effect is responsible for the tuning dynamics. Transient spectroscopy not only verifies the FWM scheme for the interacting waves but also reveals the interference dynamics between the FWM‐generated sidebands and the probe pulse. In particular, the angular dependence of the FWM generation supplies direct evidence for the phase‐matching geometry. Using experimental data, a nonlinear refractive index coefficient of 1.19 × 10<jats:sup>−14</jats:sup> cm<jats:sup>2</jats:sup> W<jats:sup>−1</jats:sup> at 1.33 µm for single‐crystal MAPbBr<jats:sub>3</jats:sub> is determined.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401021","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A degenerated four‐wave‐mixing (FWM) process in single‐crystal (CH3NH3)PbBr3 (MAPbBr3) is reported, where 150‐fs laser pulses at 1.33 µm are employed as the pump. Two pump photons interact with a single crystal, producing another two photons with higher and lower energies, respectively. One of the FWM‐generation sidebands is tuned from ∼1.23 to 1.21 µm and the other from ∼1.43 to 1.48 µm for the center wavelength, as the pump fluence is increased from 2.6 to 11.69 mJ cm−2. The self‐phase modulation induced by the strong pump pulses through the optical Kerr effect is responsible for the tuning dynamics. Transient spectroscopy not only verifies the FWM scheme for the interacting waves but also reveals the interference dynamics between the FWM‐generated sidebands and the probe pulse. In particular, the angular dependence of the FWM generation supplies direct evidence for the phase‐matching geometry. Using experimental data, a nonlinear refractive index coefficient of 1.19 × 10−14 cm2 W−1 at 1.33 µm for single‐crystal MAPbBr3 is determined.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.