Chelsea M. Heveran , Robin Gerlach , Christopher J. Hernandez , Kristen Intemann , Anne S. Meyer , Caroline Ajo-Franklin , Marimikel Charrier , Wilfred V. Srubar III , Neel Joshi , Alshakim Nelson , Matthew W. Fields
{"title":"Unlocking the societal potential of engineered living materials","authors":"Chelsea M. Heveran , Robin Gerlach , Christopher J. Hernandez , Kristen Intemann , Anne S. Meyer , Caroline Ajo-Franklin , Marimikel Charrier , Wilfred V. Srubar III , Neel Joshi , Alshakim Nelson , Matthew W. Fields","doi":"10.1016/j.matt.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><p>Engineered living materials (ELMs) are an emerging class of materials with the potential for transformative impacts in sustainability across sectors (e.g., water, energy, health). Progress toward producing ELMs with tailorable and/or stimuli-responsive functionalities has occurred in recent years, along with advances in materials manufacturing with increased complexity and scale. While a few ELMs have been commercialized, important barriers must be surmounted before their broader integration into society. These social, ethical, legal, and regulatory barriers, as well as barriers to collaboration between stakeholders, were identified in a workshop combining academic, industry, and government agency participants that was convened as part of the annual Montana Biofilm Meeting (Bozeman, MT) in July 2023. The ELM research community finds itself at a defining moment. Urgent action is needed to realize the societal benefits of ELMs while decreasing the likelihood of negative perception, and actual consequences, of their commercialization.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 9","pages":"Pages 2846-2858"},"PeriodicalIF":17.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524004041","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Engineered living materials (ELMs) are an emerging class of materials with the potential for transformative impacts in sustainability across sectors (e.g., water, energy, health). Progress toward producing ELMs with tailorable and/or stimuli-responsive functionalities has occurred in recent years, along with advances in materials manufacturing with increased complexity and scale. While a few ELMs have been commercialized, important barriers must be surmounted before their broader integration into society. These social, ethical, legal, and regulatory barriers, as well as barriers to collaboration between stakeholders, were identified in a workshop combining academic, industry, and government agency participants that was convened as part of the annual Montana Biofilm Meeting (Bozeman, MT) in July 2023. The ELM research community finds itself at a defining moment. Urgent action is needed to realize the societal benefits of ELMs while decreasing the likelihood of negative perception, and actual consequences, of their commercialization.
工程活体材料(ELMs)是一类新兴材料,有可能对各领域(如水、能源、健康)的可持续性产生变革性影响。近年来,随着材料制造技术的进步,复杂性和规模不断扩大,在生产具有可定制和/或刺激响应功能的 ELM 方面也取得了进展。虽然少数 ELM 已实现商业化,但在更广泛地融入社会之前,必须克服重大障碍。作为 2023 年 7 月蒙大拿州生物膜年会(波兹曼,马萨诸塞州)的一部分,学术界、工业界和政府机构的与会者在一次研讨会上共同确定了这些社会、道德、法律和监管障碍,以及利益相关者之间的合作障碍。ELM 研究界正处于决定性时刻。我们需要采取紧急行动,实现 ELM 的社会效益,同时降低其商业化可能带来的负面看法和实际后果。
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.