Methane fluxes in tidal marshes of the conterminous United States

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2024-09-05 DOI:10.1111/gcb.17462
Ariane Arias-Ortiz, Jaxine Wolfe, Scott D. Bridgham, Sara Knox, Gavin McNicol, Brian A. Needelman, Julie Shahan, Ellen J. Stuart-Haëntjens, Lisamarie Windham-Myers, Patty Y. Oikawa, Dennis D. Baldocchi, Joshua S. Caplan, Margaret Capooci, Kenneth M. Czapla, R. Kyle Derby, Heida L. Diefenderfer, Inke Forbrich, Gina Groseclose, Jason K. Keller, Cheryl Kelley, Amr E. Keshta, Helena S. Kleiner, Ken W. Krauss, Robert R. Lane, Sarah Mack, Serena Moseman-Valtierra, Thomas J. Mozdzer, Peter Mueller, Scott C. Neubauer, Genevieve Noyce, Karina V. R. Schäfer, Rebecca Sanders-DeMott, Charles A. Schutte, Rodrigo Vargas, Nathaniel B. Weston, Benjamin Wilson, J. Patrick Megonigal, James R. Holmquist
{"title":"Methane fluxes in tidal marshes of the conterminous United States","authors":"Ariane Arias-Ortiz,&nbsp;Jaxine Wolfe,&nbsp;Scott D. Bridgham,&nbsp;Sara Knox,&nbsp;Gavin McNicol,&nbsp;Brian A. Needelman,&nbsp;Julie Shahan,&nbsp;Ellen J. Stuart-Haëntjens,&nbsp;Lisamarie Windham-Myers,&nbsp;Patty Y. Oikawa,&nbsp;Dennis D. Baldocchi,&nbsp;Joshua S. Caplan,&nbsp;Margaret Capooci,&nbsp;Kenneth M. Czapla,&nbsp;R. Kyle Derby,&nbsp;Heida L. Diefenderfer,&nbsp;Inke Forbrich,&nbsp;Gina Groseclose,&nbsp;Jason K. Keller,&nbsp;Cheryl Kelley,&nbsp;Amr E. Keshta,&nbsp;Helena S. Kleiner,&nbsp;Ken W. Krauss,&nbsp;Robert R. Lane,&nbsp;Sarah Mack,&nbsp;Serena Moseman-Valtierra,&nbsp;Thomas J. Mozdzer,&nbsp;Peter Mueller,&nbsp;Scott C. Neubauer,&nbsp;Genevieve Noyce,&nbsp;Karina V. R. Schäfer,&nbsp;Rebecca Sanders-DeMott,&nbsp;Charles A. Schutte,&nbsp;Rodrigo Vargas,&nbsp;Nathaniel B. Weston,&nbsp;Benjamin Wilson,&nbsp;J. Patrick Megonigal,&nbsp;James R. Holmquist","doi":"10.1111/gcb.17462","DOIUrl":null,"url":null,"abstract":"<p>Methane (CH<sub>4</sub>) is a potent greenhouse gas (GHG) with atmospheric concentrations that have nearly tripled since pre-industrial times. Wetlands account for a large share of global CH<sub>4</sub> emissions, yet the magnitude and factors controlling CH<sub>4</sub> fluxes in tidal wetlands remain uncertain. We synthesized CH<sub>4</sub> flux data from 100 chamber and 9 eddy covariance (EC) sites across tidal marshes in the conterminous United States to assess controlling factors and improve predictions of CH<sub>4</sub> emissions. This effort included creating an open-source database of chamber-based GHG fluxes (https://doi.org/10.25573/serc.14227085). Annual fluxes across chamber and EC sites averaged 26 ± 53 g CH<sub>4</sub> m<sup>−2</sup> year<sup>−1</sup>, with a median of 3.9 g CH<sub>4</sub> m<sup>−2</sup> year<sup>−1</sup>, and only 25% of sites exceeding 18 g CH<sub>4</sub> m<sup>−2</sup> year<sup>−1</sup>. The highest fluxes were observed at fresh-oligohaline sites with daily maximum temperature normals (MATmax) above 25.6°C. These were followed by frequently inundated low and mid-fresh-oligohaline marshes with MATmax ≤25.6°C, and mesohaline sites with MATmax &gt;19°C. Quantile regressions of paired chamber CH<sub>4</sub> flux and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below 5 ± 3 nmol m<sup>−2</sup> s<sup>−1</sup> at sulfate concentrations &gt;4.7 ± 0.6 mM, porewater salinity &gt;21 ± 2 psu, or surface water salinity &gt;15 ± 3 psu. Across sites, salinity was the dominant predictor of annual CH<sub>4</sub> fluxes, while within sites, temperature, gross primary productivity (GPP), and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP preceded temperature in importance for predicting CH<sub>4</sub> flux changes, while the opposite was observed at the seasonal scale. Water levels influenced the timing and pathway of diel CH<sub>4</sub> fluxes, with pulsed releases of stored CH<sub>4</sub> at low to rising tide. This study provides data and methods to improve tidal marsh CH<sub>4</sub> emission estimates, support blue carbon assessments, and refine national and global GHG inventories.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.17462","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17462","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Methane (CH4) is a potent greenhouse gas (GHG) with atmospheric concentrations that have nearly tripled since pre-industrial times. Wetlands account for a large share of global CH4 emissions, yet the magnitude and factors controlling CH4 fluxes in tidal wetlands remain uncertain. We synthesized CH4 flux data from 100 chamber and 9 eddy covariance (EC) sites across tidal marshes in the conterminous United States to assess controlling factors and improve predictions of CH4 emissions. This effort included creating an open-source database of chamber-based GHG fluxes (https://doi.org/10.25573/serc.14227085). Annual fluxes across chamber and EC sites averaged 26 ± 53 g CH4 m−2 year−1, with a median of 3.9 g CH4 m−2 year−1, and only 25% of sites exceeding 18 g CH4 m−2 year−1. The highest fluxes were observed at fresh-oligohaline sites with daily maximum temperature normals (MATmax) above 25.6°C. These were followed by frequently inundated low and mid-fresh-oligohaline marshes with MATmax ≤25.6°C, and mesohaline sites with MATmax >19°C. Quantile regressions of paired chamber CH4 flux and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below 5 ± 3 nmol m−2 s−1 at sulfate concentrations >4.7 ± 0.6 mM, porewater salinity >21 ± 2 psu, or surface water salinity >15 ± 3 psu. Across sites, salinity was the dominant predictor of annual CH4 fluxes, while within sites, temperature, gross primary productivity (GPP), and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP preceded temperature in importance for predicting CH4 flux changes, while the opposite was observed at the seasonal scale. Water levels influenced the timing and pathway of diel CH4 fluxes, with pulsed releases of stored CH4 at low to rising tide. This study provides data and methods to improve tidal marsh CH4 emission estimates, support blue carbon assessments, and refine national and global GHG inventories.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美国本土潮汐沼泽中的甲烷通量。
甲烷(CH4)是一种强效温室气体(GHG),其在大气中的浓度自前工业化时代以来几乎增加了两倍。湿地在全球 CH4 排放量中占很大比例,但潮汐湿地中 CH4 通量的大小和控制因素仍不确定。我们综合了美国大陆潮汐沼泽地 100 个室和 9 个涡度协方差(EC)站点的甲烷通量数据,以评估控制因素并改进甲烷排放预测。这项工作包括创建一个基于室内温室气体通量的开源数据库 (https://doi.org/10.25573/serc.14227085)。室内和EC站点的年通量平均为26 ± 53 g CH4 m-2 year-1,中位数为3.9 g CH4 m-2 year-1,只有25%的站点超过18 g CH4 m-2 year-1。在日最高气温正常值(MATmax)高于 25.6°C 的淡水-寡水域观测到的通量最高。其次是经常被淹没的中低新鲜偏碱性沼泽(MATmax ≤25.6°C)和中性偏碱性沼泽(MATmax >19°C)。成对室甲烷通量和孔隙水生物地球化学的定量回归表明,当硫酸盐浓度 >4.7 ± 0.6 mM、孔隙水盐度 >21 ± 2 psu 或地表水盐度 >15 ± 3 psu 时,通量的第 90 百分位数低于 5 ± 3 nmol m-2 s-1。在不同地点,盐度是预测年甲烷通量的主要因素,而在不同地点,温度、总初级生产力(GPP)和潮汐高度控制着昼夜和季节尺度的变化。在昼夜尺度上,总初级生产力在预测甲烷通量变化方面的重要性先于温度,而在季节尺度上则相反。水位影响了昼夜甲烷通量的时间和路径,在退潮到涨潮时,储存的甲烷会脉冲式释放。这项研究提供了数据和方法,以改进潮汐沼泽的甲烷排放量估算,支持蓝碳评估,并完善国家和全球温室气体清单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Acclimation of Photosynthesis to CO2 Increases Ecosystem Carbon Storage due to Leaf Nitrogen Savings Balancing Water Yield and Water Use Efficiency Between Planted and Natural Forests: A Global Analysis. Hotter Temperatures Reduce the Diversity and Alter the Composition of Woody Plants in an Amazonian Forest Congruent Long-Term Declines in Carbon and Biodiversity Are a Signature of Forest Degradation Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1