首页 > 最新文献

Global Change Biology最新文献

英文 中文
Double Trouble for Native Species Under Climate Change: Habitat Loss and Increased Environmental Overlap With Non‐Native Species
IF 11.6 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Pub Date : 2025-01-17 DOI: 10.1111/gcb.70040
Arif Jan, Ivan Arismendi, Guillermo Giannico
Climate change and biological invasions are affecting natural ecosystems globally. The effects of these stressors on native species' biogeography have been studied separately, but their combined effects remain overlooked. Here, we develop a framework to assess how climate change influences both the range and niche overlap of native and non‐native species using ecological niche models. We hypothesize that species with similar niches will experience both range reductions and increased niche overlap under future climates. We evaluate this using the ongoing invasion of smallmouth bass (Micropterus dolomieu) and northern pike (Esox lucius) on the native habitats of redband trout (Oncorhynchus mykiss) and bull trout (Salvelinus confluentus) in western North America. Future climate conditions will reduce habitat suitability for native and non‐native species, but an increased niche overlap might exacerbate negative effects on native fishes. Our framework offers a tool to predict potential species distribution and interactions under climate change, informing adaptive management globally.
{"title":"Double Trouble for Native Species Under Climate Change: Habitat Loss and Increased Environmental Overlap With Non‐Native Species","authors":"Arif Jan, Ivan Arismendi, Guillermo Giannico","doi":"10.1111/gcb.70040","DOIUrl":"https://doi.org/10.1111/gcb.70040","url":null,"abstract":"Climate change and biological invasions are affecting natural ecosystems globally. The effects of these stressors on native species' biogeography have been studied separately, but their combined effects remain overlooked. Here, we develop a framework to assess how climate change influences both the range and niche overlap of native and non‐native species using ecological niche models. We hypothesize that species with similar niches will experience both range reductions and increased niche overlap under future climates. We evaluate this using the ongoing invasion of smallmouth bass (<jats:styled-content style=\"fixed-case\"><jats:italic>Micropterus dolomieu</jats:italic></jats:styled-content>) and northern pike (<jats:styled-content style=\"fixed-case\"><jats:italic>Esox lucius</jats:italic></jats:styled-content>) on the native habitats of redband trout (<jats:styled-content style=\"fixed-case\"><jats:italic>Oncorhynchus mykiss</jats:italic></jats:styled-content>) and bull trout (<jats:styled-content style=\"fixed-case\"><jats:italic>Salvelinus confluentus</jats:italic></jats:styled-content>) in western North America. Future climate conditions will reduce habitat suitability for native and non‐native species, but an increased niche overlap might exacerbate negative effects on native fishes. Our framework offers a tool to predict potential species distribution and interactions under climate change, informing adaptive management globally.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"74 1","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Considering Multiecosystem Trade-Offs Is Critical When Leveraging Systematic Conservation Planning for Restoration
IF 11.6 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Pub Date : 2025-01-17 DOI: 10.1111/gcb.70020
Nicholas J. Van Lanen, Courtney J. Duchardt, Liba Pejchar, Jessica E. Shyvers, Cameron L. Aldridge
Conservationists are increasingly leveraging systematic conservation planning (SCP) to inform restoration actions that enhance biodiversity. However, restoration frequently drives ecological transformations at local scales, potentially resulting in trade-offs among wildlife species and communities. The Conservation Interactions Principle (CIP), coined more than 15 years ago, cautions SCP practitioners regarding the importance of jointly and fully evaluating conservation outcomes across the landscape over long timeframes. However, SCP efforts that guide landscape restoration have inadequately addressed the CIP by failing to tabulate the full value of the current ecological state. The increased application of SCP to inform restoration, reliance on increasingly small areas to sustain at-risk species and ecological communities, ineffective considerations for the changing climate, and increasing numbers of at-risk species, are collectively intensifying the need to consider unintended consequences when prioritizing sites for restoration. Improper incorporation of the CIP in SCP may result in inefficient use of conservation resources through opportunity costs and/or conservation actions that counteract one another. We suggest SCP practitioners can avoid these consequences through a more detailed accounting of the current ecological benefits to better address the CIP when conducting restoration planning. Specifically, forming interdisciplinary teams with expertise in the current and desired ecosystem states at candidate conservation sites; improving data availability; modeling and computational advancements; and applying structured decision-making approaches can all improve the integration of the CIP in SCP efforts. Improved trade-off assessment, spanning multiple ecosystems or states, can facilitate efficient, proactive, and coordinated SCP applications across space and time. In doing so, SCP can effectively guide the siting of restoration actions capable of promoting the full suite of biodiversity in a region.
{"title":"Considering Multiecosystem Trade-Offs Is Critical When Leveraging Systematic Conservation Planning for Restoration","authors":"Nicholas J. Van Lanen, Courtney J. Duchardt, Liba Pejchar, Jessica E. Shyvers, Cameron L. Aldridge","doi":"10.1111/gcb.70020","DOIUrl":"https://doi.org/10.1111/gcb.70020","url":null,"abstract":"Conservationists are increasingly leveraging systematic conservation planning (SCP) to inform restoration actions that enhance biodiversity. However, restoration frequently drives ecological transformations at local scales, potentially resulting in trade-offs among wildlife species and communities. The <i>Conservation Interactions Principle</i> (CIP), coined more than 15 years ago, cautions SCP practitioners regarding the importance of jointly and fully evaluating conservation outcomes across the landscape over long timeframes. However, SCP efforts that guide landscape restoration have inadequately addressed the CIP by failing to tabulate the full value of the current ecological state. The increased application of SCP to inform restoration, reliance on increasingly small areas to sustain at-risk species and ecological communities, ineffective considerations for the changing climate, and increasing numbers of at-risk species, are collectively intensifying the need to consider unintended consequences when prioritizing sites for restoration. Improper incorporation of the CIP in SCP may result in inefficient use of conservation resources through opportunity costs and/or conservation actions that counteract one another. We suggest SCP practitioners can avoid these consequences through a more detailed accounting of the current ecological benefits to better address the CIP when conducting restoration planning. Specifically, forming interdisciplinary teams with expertise in the current and desired ecosystem states at candidate conservation sites; improving data availability; modeling and computational advancements; and applying structured decision-making approaches can all improve the integration of the CIP in SCP efforts. Improved trade-off assessment, spanning multiple ecosystems or states, can facilitate efficient, proactive, and coordinated SCP applications across space and time. In doing so, SCP can effectively guide the siting of restoration actions capable of promoting the full suite of biodiversity in a region.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"45 1","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142988234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Atmospheric Pollutants on Volatile-Mediated Insect Ecosystem Services
IF 11.6 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Pub Date : 2025-01-17 DOI: 10.1111/gcb.70034
Delia M. Pinto-Zevallos, Oksana Skaldina, James D. Blande
Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), ozone (O3), sulphur dioxide (SO2) and particulate matter (PM2.5/PM10) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects. Consequently, air pollutants can affect ecosystem functioning and the services regulated by plant–insect interactions. This review examines the already identified and potential impacts of air pollutants on different aspects of VOC-mediated plant–insect interactions underlying a range of insect ES. Furthermore, we investigate the potential susceptibility of insects to future environmental changes and the adaptive mechanisms they may employ to efficiently detect odours. The current body of knowledge on the effects of air pollutants on key interspecific interactions is biased towards and limited to a few pollinators, herbivores and parasitoids on model plants. There is a notable absence of research on decomposers and seed dispersers. With exception of O3 and NOx, the effects of some widespread and emerging environmental pollutants, such as secondary organic aerosols (SOAs), SO2, HMs, PM and MPs/NPs, remain largely unexplored. It is recommended that the identified knowledge gaps be addressed in future research, with the aim of designing effective mitigation strategies for the adverse effects in question and developing robust conservation frameworks.
{"title":"Effects of Atmospheric Pollutants on Volatile-Mediated Insect Ecosystem Services","authors":"Delia M. Pinto-Zevallos, Oksana Skaldina, James D. Blande","doi":"10.1111/gcb.70034","DOIUrl":"https://doi.org/10.1111/gcb.70034","url":null,"abstract":"Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO<sub>2</sub>), nitrogen oxides (NO<sub><i>x</i></sub>), ozone (O<sub>3</sub>), sulphur dioxide (SO<sub>2</sub>) and particulate matter (PM<sub>2.5</sub>/PM<sub>10</sub>) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects. Consequently, air pollutants can affect ecosystem functioning and the services regulated by plant–insect interactions. This review examines the already identified and potential impacts of air pollutants on different aspects of VOC-mediated plant–insect interactions underlying a range of insect ES. Furthermore, we investigate the potential susceptibility of insects to future environmental changes and the adaptive mechanisms they may employ to efficiently detect odours. The current body of knowledge on the effects of air pollutants on key interspecific interactions is biased towards and limited to a few pollinators, herbivores and parasitoids on model plants. There is a notable absence of research on decomposers and seed dispersers. With exception of O<sub>3</sub> and NO<sub><i>x</i></sub>, the effects of some widespread and emerging environmental pollutants, such as secondary organic aerosols (SOAs), SO<sub>2</sub>, HMs, PM and MPs/NPs, remain largely unexplored. It is recommended that the identified knowledge gaps be addressed in future research, with the aim of designing effective mitigation strategies for the adverse effects in question and developing robust conservation frameworks.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"45 1","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142988235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Interface Between Planetary Boundaries and Palaeoecology
IF 11.6 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Pub Date : 2025-01-16 DOI: 10.1111/gcb.70017
Lindsey Gillson, Alistair Seddon, Ondřej Mottl, Ke Zhang, Kelly Kirsten, Peter Gell, Rob A. Marchant, Christoph Schwörer, Estelle Razanatsoa, Paul J. Lane, Colin J. Courtney-Mustaphi, John Dearing
The concepts of planetary boundaries are influential in the sustainability literature and assist in delineating the ‘safe operating spaces’ beyond which critical Earth system processes could collapse. Moving away from our current trajectory towards ‘hothouse Earth’ will require knowledge of how Earth systems have varied throughout the Holocene, and whether and how far we have deviated from past ranges of variability. Such information can inform decisions about where change could be resisted, accepted or where adaptation is inevitable. The need for information on long-term (Holocene) change provides an interface for palaeoecology and sustainability that remains underexploited. In this position paper, we explore this interface, first discussing the need for long-term perspectives and introducing examples where palaeoecology has been used in defining safe operating spaces and constraining limits of acceptable change. We describe advances in quantitative methods for analysis of time-series data that strengthen the contribution of palaeoecology to the concepts of planetary boundaries and safe operating spaces. We consider the importance of issues of scaling from landscape to regional and global scales in operationalising planetary boundaries concepts. We distil principles for this field of research going forward and introduce three case studies which will form the basis of research on these topics.
{"title":"Exploring the Interface Between Planetary Boundaries and Palaeoecology","authors":"Lindsey Gillson, Alistair Seddon, Ondřej Mottl, Ke Zhang, Kelly Kirsten, Peter Gell, Rob A. Marchant, Christoph Schwörer, Estelle Razanatsoa, Paul J. Lane, Colin J. Courtney-Mustaphi, John Dearing","doi":"10.1111/gcb.70017","DOIUrl":"https://doi.org/10.1111/gcb.70017","url":null,"abstract":"The concepts of planetary boundaries are influential in the sustainability literature and assist in delineating the ‘safe operating spaces’ beyond which critical Earth system processes could collapse. Moving away from our current trajectory towards ‘hothouse Earth’ will require knowledge of how Earth systems have varied throughout the Holocene, and whether and how far we have deviated from past ranges of variability. Such information can inform decisions about where change could be resisted, accepted or where adaptation is inevitable. The need for information on long-term (Holocene) change provides an interface for palaeoecology and sustainability that remains underexploited. In this position paper, we explore this interface, first discussing the need for long-term perspectives and introducing examples where palaeoecology has been used in defining safe operating spaces and constraining limits of acceptable change. We describe advances in quantitative methods for analysis of time-series data that strengthen the contribution of palaeoecology to the concepts of planetary boundaries and safe operating spaces. We consider the importance of issues of scaling from landscape to regional and global scales in operationalising planetary boundaries concepts. We distil principles for this field of research going forward and introduce three case studies which will form the basis of research on these topics.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"29 1","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Earthquakes Have Accelerated the Carbon Dioxide Emission Rate of Soils on the Qinghai‐Tibet Plateau
IF 11.6 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Pub Date : 2025-01-11 DOI: 10.1111/gcb.70024
Peijun Shi, Xiaokang Hu, Heyi Yang, Lu Jiang, Yonggui Ma, Haiping Tang, Qiang Zhou, Fenggui Liu, Lianyou Liu
The Qinghai‐Tibet Plateau (QTP) has an extensive frozen soil distribution and intense geological tectonic activity. Our surveys reveal that Qinghai‐Tibet Plateau earthquakes can not only damage infrastructure but also significantly impact carbon dioxide emissions. Fissures created by earthquakes expose deep, frozen soils to the air and, in turn, accelerate soil carbon emissions. We measured average soil carbon emission rates of 968.53 g CO2 m−2·a−1 on the fissure sidewall and 514.79 g CO2 m−2·a−1 at the fissure bottom. We estimated that the total soil carbon emission flux from fissures caused by M ≥ 6.9 earthquakes on the Qinghai‐Tibet Plateau from 326 B.C. to 2022 is 1.83 × 1012 g CO2 a−1; this value is equivalent to 0.51% ~ 1.48% and 2.34% ~ 5.14% of the increased annual average carbon sink resulting from the national ecological restoration projects targeting forest protection and grassland conservation in China, respectively. These earthquake fissures thus increased the soil carbon emission rate by 0.71 g CO2 m−2·a−1 and significantly increased the total carbon emissions. This finding shows that repairing earthquake fissures could play a very important role in coping with global climate change.
{"title":"Earthquakes Have Accelerated the Carbon Dioxide Emission Rate of Soils on the Qinghai‐Tibet Plateau","authors":"Peijun Shi, Xiaokang Hu, Heyi Yang, Lu Jiang, Yonggui Ma, Haiping Tang, Qiang Zhou, Fenggui Liu, Lianyou Liu","doi":"10.1111/gcb.70024","DOIUrl":"https://doi.org/10.1111/gcb.70024","url":null,"abstract":"The Qinghai‐Tibet Plateau (QTP) has an extensive frozen soil distribution and intense geological tectonic activity. Our surveys reveal that Qinghai‐Tibet Plateau earthquakes can not only damage infrastructure but also significantly impact carbon dioxide emissions. Fissures created by earthquakes expose deep, frozen soils to the air and, in turn, accelerate soil carbon emissions. We measured average soil carbon emission rates of 968.53 g CO<jats:sub>2</jats:sub> m<jats:sup>−2</jats:sup>·a<jats:sup>−1</jats:sup> on the fissure sidewall and 514.79 g CO<jats:sub>2</jats:sub> m<jats:sup>−2</jats:sup>·a<jats:sup>−1</jats:sup> at the fissure bottom. We estimated that the total soil carbon emission flux from fissures caused by M ≥ 6.9 earthquakes on the Qinghai‐Tibet Plateau from 326 B.C. to 2022 is 1.83 × 10<jats:sup>12</jats:sup> g CO<jats:sub>2</jats:sub> a<jats:sup>−1</jats:sup>; this value is equivalent to 0.51% ~ 1.48% and 2.34% ~ 5.14% of the increased annual average carbon sink resulting from the national ecological restoration projects targeting forest protection and grassland conservation in China, respectively. These earthquake fissures thus increased the soil carbon emission rate by 0.71 g CO<jats:sub>2</jats:sub> m<jats:sup>−2</jats:sup>·a<jats:sup>−1</jats:sup> and significantly increased the total carbon emissions. This finding shows that repairing earthquake fissures could play a very important role in coping with global climate change.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"21 1","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increased Mineral-Associated Organic Carbon and Persistent Molecules in Allochthonous Blue Carbon Ecosystems
IF 11.6 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Pub Date : 2025-01-07 DOI: 10.1111/gcb.70019
Yuan Li, Chuancheng Fu, Chenglong Ye, Zhaoliang Song, Yakov Kuzyakov, Tony Vancov, Laodong Guo, Zhongkui Luo, Lukas Van Zwieten, Yidong Wang, Yu Luo, Weiqi Wang, Lin Zeng, Guangxuan Han, Hailong Wang, Yongming Luo
Coastal wetlands contain very large carbon (C) stocks—termed as blue C—and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China. We found that mineral-associated organic C (MAOC) is enriched in BCEs dominated by allochthonous inputs and abundant active minerals, leading to an increased proportion of persistent organic molecules. Specifically, soils with large allochthonous inputs (> 50%) are characterized by a substantial contribution of MAOC (> 70%) to total SOC with a notable preservation of lipids (36%) across salt marshes, mangroves, and seagrasses. The burial of allochthonous particles, derived from external sources such as rivers or tidal influxes, facilitates the formation of stable MAOC through binding to mineral surfaces or occlusion within microaggregates. The proportions of particulate organic C (POC) and MAOC are important predictors for molecular compositions of soil organic matter. Lipid proportions within molecular composition decrease as POC and autochthonous C proportions increase. These findings provide new insights into the coupled control over SOC sequestration in BCEs, emphasizing the role of allochthonous inputs, proportions of carbon pools, and persistent organic components.
{"title":"Increased Mineral-Associated Organic Carbon and Persistent Molecules in Allochthonous Blue Carbon Ecosystems","authors":"Yuan Li, Chuancheng Fu, Chenglong Ye, Zhaoliang Song, Yakov Kuzyakov, Tony Vancov, Laodong Guo, Zhongkui Luo, Lukas Van Zwieten, Yidong Wang, Yu Luo, Weiqi Wang, Lin Zeng, Guangxuan Han, Hailong Wang, Yongming Luo","doi":"10.1111/gcb.70019","DOIUrl":"https://doi.org/10.1111/gcb.70019","url":null,"abstract":"Coastal wetlands contain very large carbon (C) stocks—termed as blue C—and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China. We found that mineral-associated organic C (MAOC) is enriched in BCEs dominated by allochthonous inputs and abundant active minerals, leading to an increased proportion of persistent organic molecules. Specifically, soils with large allochthonous inputs (&gt; 50%) are characterized by a substantial contribution of MAOC (&gt; 70%) to total SOC with a notable preservation of lipids (36%) across salt marshes, mangroves, and seagrasses. The burial of allochthonous particles, derived from external sources such as rivers or tidal influxes, facilitates the formation of stable MAOC through binding to mineral surfaces or occlusion within microaggregates. The proportions of particulate organic C (POC) and MAOC are important predictors for molecular compositions of soil organic matter. Lipid proportions within molecular composition decrease as POC and autochthonous C proportions increase. These findings provide new insights into the coupled control over SOC sequestration in BCEs, emphasizing the role of allochthonous inputs, proportions of carbon pools, and persistent organic components.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"23 1","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142936534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patterns and Driving Factors of Litter Decomposition Rates in Global Dryland Ecosystems
IF 11.6 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Pub Date : 2025-01-06 DOI: 10.1111/gcb.70025
Yuedan Zhao, Nan Lu, Hao Shi, Jianbei Huang, Bojie Fu
Litter decomposition is essential in linking aboveground and belowground carbon, nutrient cycles, and energy flows within ecosystems. This process has been profoundly impacted by global change, particularly in drylands, which are highly susceptible to both anthropogenic and natural disturbances. However, a significant knowledge gap remains concerning the extent and drivers of litter decomposition across different dryland ecosystems, limiting our understanding of its role in ecosystem metabolism. Using the ARIDEC data collection and published literature, a global database on litter decomposition and corresponding environmental conditions in drylands was developed, comprising 2204 observations from 158 sites. Decomposition rates varied across the four dryland subregions, with the highest rates in the dry‐subhumid region (3.24% month−1), followed by semi‐arid (3.15% month−1), arid (2.62% month−1), and hyper‐arid (2.35% month−1) regions. Notably, the dry‐subhumid region exhibited the greatest variability. Anthropogenic systems, such as cropland (5.52% month−1) and urban ecosystems (7.88% month−1), demonstrated higher decomposition rates than natural systems (averaging 3.07% month−1). Across drylands, the decomposition rate followed an exponential function of decomposition duration (), influenced by litter quality, climate, and soil properties. Beyond decomposition duration, three boosted regression tree models were developed to identify the primary factors influencing early (R2 = 0.92), mid (R2 = 0.71), and late (R2 = 0.80) decomposition stages. In the early‐ and mid‐stages, precipitation, atmospheric temperature, and soil moisture were critical factors, while the UV index and initial nitrogen content of litter played significant roles in the early and mid‐phases, respectively. In the late phase, soil total nitrogen, soil organic carbon, and the initial C/N ratio of litter were the primary factors. Our findings reveal consistent temporal patterns in decomposition rates and the mechanisms underlying them in global dryland ecosystems. These insights can enhance the accuracy of biogeochemical models in drylands and improve predictions of their feedback to the climate system.
{"title":"Patterns and Driving Factors of Litter Decomposition Rates in Global Dryland Ecosystems","authors":"Yuedan Zhao, Nan Lu, Hao Shi, Jianbei Huang, Bojie Fu","doi":"10.1111/gcb.70025","DOIUrl":"https://doi.org/10.1111/gcb.70025","url":null,"abstract":"Litter decomposition is essential in linking aboveground and belowground carbon, nutrient cycles, and energy flows within ecosystems. This process has been profoundly impacted by global change, particularly in drylands, which are highly susceptible to both anthropogenic and natural disturbances. However, a significant knowledge gap remains concerning the extent and drivers of litter decomposition across different dryland ecosystems, limiting our understanding of its role in ecosystem metabolism. Using the ARIDEC data collection and published literature, a global database on litter decomposition and corresponding environmental conditions in drylands was developed, comprising 2204 observations from 158 sites. Decomposition rates varied across the four dryland subregions, with the highest rates in the dry‐subhumid region (3.24% month<jats:sup>−1</jats:sup>), followed by semi‐arid (3.15% month<jats:sup>−1</jats:sup>), arid (2.62% month<jats:sup>−1</jats:sup>), and hyper‐arid (2.35% month<jats:sup>−1</jats:sup>) regions. Notably, the dry‐subhumid region exhibited the greatest variability. Anthropogenic systems, such as cropland (5.52% month<jats:sup>−1</jats:sup>) and urban ecosystems (7.88% month<jats:sup>−1</jats:sup>), demonstrated higher decomposition rates than natural systems (averaging 3.07% month<jats:sup>−1</jats:sup>). Across drylands, the decomposition rate followed an exponential function of decomposition duration (), influenced by litter quality, climate, and soil properties. Beyond decomposition duration, three boosted regression tree models were developed to identify the primary factors influencing early (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.92), mid (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.71), and late (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.80) decomposition stages. In the early‐ and mid‐stages, precipitation, atmospheric temperature, and soil moisture were critical factors, while the UV index and initial nitrogen content of litter played significant roles in the early and mid‐phases, respectively. In the late phase, soil total nitrogen, soil organic carbon, and the initial C/N ratio of litter were the primary factors. Our findings reveal consistent temporal patterns in decomposition rates and the mechanisms underlying them in global dryland ecosystems. These insights can enhance the accuracy of biogeochemical models in drylands and improve predictions of their feedback to the climate system.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"89 21 1","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate Change Influences via Species Distribution Shifts and Century‐Scale Warming in an End‐To‐End California Current Ecosystem Model
IF 11.6 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Pub Date : 2025-01-06 DOI: 10.1111/gcb.70021
Owen R. Liu, Isaac C. Kaplan, Pierre‐Yves Hernvann, Elizabeth A. Fulton, Melissa A. Haltuch, Chris J. Harvey, Kristin N. Marshall, Barbara Muhling, Karma Norman, Mercedes Pozo Buil, Alberto Rovellini, Jameal F. Samhouri
Climate change can impact marine ecosystems through many biological and ecological processes. Ecosystem models are one tool that can be used to simulate how the complex impacts of climate change may manifest in a warming world. In this study, we used an end‐to‐end Atlantis ecosystem model to compare and contrast the effects of climate‐driven species redistribution and projected temperature from three separate climate models on species of key commercial importance in the California Current Ecosystem. Adopting a scenario analysis approach, we used Atlantis to measure differences in the biomass, abundance, and weight at age of pelagic and demersal species among six simulations for the years 2013–2100 and tracked the implications of those changes for spatially defined California Current fishing fleets. The simulations varied in their use of forced climate‐driven species distribution shifts, time‐varying projections of ocean warming, or both. In general, the abundance and biomass of coastal pelagic species like Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) were more sensitive to projected climate change, while demersal groups like Dover sole (Microstomus pacificus) experienced smaller changes due to counteracting effects of spatial distribution change and metabolic effects of warming. Climate‐driven species distribution shifts and the resulting changes in food web interactions were more influential than warming on end‐of‐century biomass and abundance patterns. Spatial projections of changes in fisheries catch did not always align with changes in abundance of their targeted species. This mismatch is likely due to species distribution shifts into or out of fishing areas and emphasizes the importance of a spatially explicit understanding of both climate change effects and fishing dynamics. We illuminate important biological and ecological pathways through which climate change acts in an ecosystem context and end with a discussion of potential management implications and future directions for climate change research using ecosystem models.
{"title":"Climate Change Influences via Species Distribution Shifts and Century‐Scale Warming in an End‐To‐End California Current Ecosystem Model","authors":"Owen R. Liu, Isaac C. Kaplan, Pierre‐Yves Hernvann, Elizabeth A. Fulton, Melissa A. Haltuch, Chris J. Harvey, Kristin N. Marshall, Barbara Muhling, Karma Norman, Mercedes Pozo Buil, Alberto Rovellini, Jameal F. Samhouri","doi":"10.1111/gcb.70021","DOIUrl":"https://doi.org/10.1111/gcb.70021","url":null,"abstract":"Climate change can impact marine ecosystems through many biological and ecological processes. Ecosystem models are one tool that can be used to simulate how the complex impacts of climate change may manifest in a warming world. In this study, we used an end‐to‐end Atlantis ecosystem model to compare and contrast the effects of climate‐driven species redistribution and projected temperature from three separate climate models on species of key commercial importance in the California Current Ecosystem. Adopting a scenario analysis approach, we used Atlantis to measure differences in the biomass, abundance, and weight at age of pelagic and demersal species among six simulations for the years 2013–2100 and tracked the implications of those changes for spatially defined California Current fishing fleets. The simulations varied in their use of forced climate‐driven species distribution shifts, time‐varying projections of ocean warming, or both. In general, the abundance and biomass of coastal pelagic species like Pacific sardine (<jats:styled-content style=\"fixed-case\"><jats:italic>Sardinops sagax</jats:italic></jats:styled-content>) and northern anchovy (<jats:styled-content style=\"fixed-case\"><jats:italic>Engraulis mordax</jats:italic></jats:styled-content>) were more sensitive to projected climate change, while demersal groups like Dover sole (<jats:styled-content style=\"fixed-case\"><jats:italic>Microstomus pacificus</jats:italic></jats:styled-content>) experienced smaller changes due to counteracting effects of spatial distribution change and metabolic effects of warming. Climate‐driven species distribution shifts and the resulting changes in food web interactions were more influential than warming on end‐of‐century biomass and abundance patterns. Spatial projections of changes in fisheries catch did not always align with changes in abundance of their targeted species. This mismatch is likely due to species distribution shifts into or out of fishing areas and emphasizes the importance of a spatially explicit understanding of both climate change effects and fishing dynamics. We illuminate important biological and ecological pathways through which climate change acts in an ecosystem context and end with a discussion of potential management implications and future directions for climate change research using ecosystem models.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"20 1","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tree Lifespans in a Warming World: Unravelling the Universal Trade-Off Between Growth and Lifespan in Temperate Forests
IF 11.6 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Pub Date : 2025-01-06 DOI: 10.1111/gcb.70023
Shuhui Liu, Roel J. W. Brienen, Chunyu Fan, Minhui Hao, Xiuhai Zhao, Chunyu Zhang
Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO2 have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink. This study aims to identify key drivers of growth and lifespan, assess the universality of tree growth-lifespan trade-offs, explore the possible latitudinal patterns of trade-off strengths and their determinants, and project growth and lifespan under future climate scenarios. We analyzed 21,193 trees of 69 species (48 included in further analysis) at 445 sites (417 included in further analysis) in temperate forests in northeastern China to estimate early growth rate and tree lifespan. We find that temperature and human pressure enhance tree growth and reduce lifespan, while altitude increases lifespan. We further find evidence for growth-lifespan trade-offs at all studied levels, that is, among trees, among species and communities, and within species and communities. Trade-offs are stronger at colder, higher latitudes compared to warmer sites, because of larger variation in tree growth and climate, larger range sizes for individual species, and lower species' diversity for communities at high latitudes. We predict future increases in growth and reductions in tree lifespan in response to climate change for the 2050s. Taking growth lifespan trade-offs into account resulted in even larger predictions of decreases in tree lifespan of up to 8%. In conclusion, growth-lifespan trade-offs are universal, but the strengths may vary by environment and between different forests. Its effects are important to include in predictions of forest responses to global change and need to be considered more widely.
{"title":"Tree Lifespans in a Warming World: Unravelling the Universal Trade-Off Between Growth and Lifespan in Temperate Forests","authors":"Shuhui Liu, Roel J. W. Brienen, Chunyu Fan, Minhui Hao, Xiuhai Zhao, Chunyu Zhang","doi":"10.1111/gcb.70023","DOIUrl":"https://doi.org/10.1111/gcb.70023","url":null,"abstract":"Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO<sub>2</sub> have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink. This study aims to identify key drivers of growth and lifespan, assess the universality of tree growth-lifespan trade-offs, explore the possible latitudinal patterns of trade-off strengths and their determinants, and project growth and lifespan under future climate scenarios. We analyzed 21,193 trees of 69 species (48 included in further analysis) at 445 sites (417 included in further analysis) in temperate forests in northeastern China to estimate early growth rate and tree lifespan. We find that temperature and human pressure enhance tree growth and reduce lifespan, while altitude increases lifespan. We further find evidence for growth-lifespan trade-offs at all studied levels, that is, among trees, among species and communities, and within species and communities. Trade-offs are stronger at colder, higher latitudes compared to warmer sites, because of larger variation in tree growth and climate, larger range sizes for individual species, and lower species' diversity for communities at high latitudes. We predict future increases in growth and reductions in tree lifespan in response to climate change for the 2050s. Taking growth lifespan trade-offs into account resulted in even larger predictions of decreases in tree lifespan of up to 8%. In conclusion, growth-lifespan trade-offs are universal, but the strengths may vary by environment and between different forests. Its effects are important to include in predictions of forest responses to global change and need to be considered more widely.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"27 1","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting Climate Mitigation Through Carbon Burial in Blue Carbon Ecosystems—Challenges and Pitfalls
IF 11.6 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Pub Date : 2025-01-06 DOI: 10.1111/gcb.70022
Erik Kristensen, Mogens R. Flindt, Cintia O. Quintana
The concept of “blue carbon” is, in this study, critically evaluated with respect to its definitions, measuring approaches, and time scales. Blue carbon deposited in ocean sediments can only counteract anthropogenic greenhouse gas (GHG) emissions if stored on a long‐term basis. The focus here is on the coastal blue carbon ecosystems (BCEs), mangrove forests, saltmarshes, and seagrass meadows due to their high primary production and large carbon stocks. Blue carbon sequestration in BCEs is typically estimated using either: 1. sediment carbon inventories combined with accretion rates or 2. carbon mass balance between input to and output from the sediment. The inventory approach is compromised by a lack of accurate accretion estimates over extended time periods. Hence, short‐term sedimentation assays cannot be reliably extrapolated to long timescales. The use of long‐term tracers like 210Pb, on the other hand, is invalid in most BCEs due to sediment mobility by bioturbation and other physical disturbances. While the mass balance approach provides reasonable short‐term (months) estimates, it often fails when extrapolated over longer time periods (> 100 years) due to climatic variations. Furthermore, many published budgets based on mass balance do not include all relevant carbon sources and sinks. Simulations of long‐term decomposition of mangrove, saltmarsh (Spartina sp.), and eelgrass (Zostera sp.) litter using a 3‐G exponential model indicate that current estimates of carbon sequestration based on the inventory and mass balance approaches are 3–18 times too high. Most published estimates of carbon sequestration in BCEs must therefore be considered overestimates. The climate mitigation potential of blue carbon in BCEs is also challenged by excess emissions of the GHG methane (CH4) and nitrous oxide (N2O) from biogenic structures in mangrove forests and saltmarsh sediments. Thus, in many cases, carbon sequestration into BCE sediments cannot keep pace with the simultaneous GHG emissions in CO2 equivalents.
{"title":"Predicting Climate Mitigation Through Carbon Burial in Blue Carbon Ecosystems—Challenges and Pitfalls","authors":"Erik Kristensen, Mogens R. Flindt, Cintia O. Quintana","doi":"10.1111/gcb.70022","DOIUrl":"https://doi.org/10.1111/gcb.70022","url":null,"abstract":"The concept of “blue carbon” is, in this study, critically evaluated with respect to its definitions, measuring approaches, and time scales. Blue carbon deposited in ocean sediments can only counteract anthropogenic greenhouse gas (GHG) emissions if stored on a long‐term basis. The focus here is on the coastal blue carbon ecosystems (BCEs), mangrove forests, saltmarshes, and seagrass meadows due to their high primary production and large carbon stocks. Blue carbon sequestration in BCEs is typically estimated using either: 1. sediment carbon inventories combined with accretion rates or 2. carbon mass balance between input to and output from the sediment. The inventory approach is compromised by a lack of accurate accretion estimates over extended time periods. Hence, short‐term sedimentation assays cannot be reliably extrapolated to long timescales. The use of long‐term tracers like <jats:sup>210</jats:sup>Pb, on the other hand, is invalid in most BCEs due to sediment mobility by bioturbation and other physical disturbances. While the mass balance approach provides reasonable short‐term (months) estimates, it often fails when extrapolated over longer time periods (&gt; 100 years) due to climatic variations. Furthermore, many published budgets based on mass balance do not include all relevant carbon sources and sinks. Simulations of long‐term decomposition of mangrove, saltmarsh (<jats:italic>Spartina</jats:italic> sp.), and eelgrass (<jats:italic>Zostera</jats:italic> sp.) litter using a 3‐G exponential model indicate that current estimates of carbon sequestration based on the inventory and mass balance approaches are 3–18 times too high. Most published estimates of carbon sequestration in BCEs must therefore be considered overestimates. The climate mitigation potential of blue carbon in BCEs is also challenged by excess emissions of the GHG methane (CH<jats:sub>4</jats:sub>) and nitrous oxide (N<jats:sub>2</jats:sub>O) from biogenic structures in mangrove forests and saltmarsh sediments. Thus, in many cases, carbon sequestration into BCE sediments cannot keep pace with the simultaneous GHG emissions in CO<jats:sub>2</jats:sub> equivalents.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"203 1","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Global Change Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1