Emilie Skytte Vosegaard, Mohammad Aref Hasen Mamakhel, Vijay Singh Parmar, Andreas Dueholm Bertelsen, Bo Brummerstedt Iversen
{"title":"Synthesis and characterization of an organic-inorganic hybrid crystal: 2[Co(en)<sub>3</sub>](V<sub>4</sub>O<sub>13</sub>)·4H<sub>2</sub>O.","authors":"Emilie Skytte Vosegaard, Mohammad Aref Hasen Mamakhel, Vijay Singh Parmar, Andreas Dueholm Bertelsen, Bo Brummerstedt Iversen","doi":"10.1107/S2052520624007509","DOIUrl":null,"url":null,"abstract":"<p><p>Organic-inorganic hybrid crystals have diverse functionalities, for example in energy storage and luminescence, due to their versatile structures. The synthesis and structural characterization of a new cobalt-vanadium-containing compound, 2[Co(en)<sub>3</sub>]<sup>3+</sup>(V<sub>4</sub>O<sub>13</sub>)<sup>6-</sup>·4H<sub>2</sub>O (1) is presented. The crystal structure of 1, consisting of [Co(en)<sub>3</sub>]<sup>3+</sup> complexes and chains of corner-sharing (VO<sub>4</sub>) tetrahedra, was solved by single-crystal X-ray diffraction in the centrosymmetric space group P1. Phase purity of the bulk material was confirmed by infrared spectroscopy, scanning electron microscopy, elemental analysis and powder X-ray diffraction. The volume expansion of 1 was found to be close to 1% in the reported temperature range from 100 to 300 K, with a volume thermal expansion coefficient of 56 (2) × 10<sup>-6</sup> K<sup>-1</sup>. The electronic band gap of 1 is 2.30 (1) eV, and magnetic susceptibility measurements showed that the compound exhibits a weak paramagnetic response down to 1.8 K, probably due to minor Co<sup>II</sup> impurities (<1%) on the Co<sup>III</sup> site.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457104/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2052520624007509","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic-inorganic hybrid crystals have diverse functionalities, for example in energy storage and luminescence, due to their versatile structures. The synthesis and structural characterization of a new cobalt-vanadium-containing compound, 2[Co(en)3]3+(V4O13)6-·4H2O (1) is presented. The crystal structure of 1, consisting of [Co(en)3]3+ complexes and chains of corner-sharing (VO4) tetrahedra, was solved by single-crystal X-ray diffraction in the centrosymmetric space group P1. Phase purity of the bulk material was confirmed by infrared spectroscopy, scanning electron microscopy, elemental analysis and powder X-ray diffraction. The volume expansion of 1 was found to be close to 1% in the reported temperature range from 100 to 300 K, with a volume thermal expansion coefficient of 56 (2) × 10-6 K-1. The electronic band gap of 1 is 2.30 (1) eV, and magnetic susceptibility measurements showed that the compound exhibits a weak paramagnetic response down to 1.8 K, probably due to minor CoII impurities (<1%) on the CoIII site.
期刊介绍:
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.