Alpha oscillations during visual selective attention are aberrant in youth and adults with cerebral palsy.

IF 2.9 2区 医学 Q2 NEUROSCIENCES Cerebral cortex Pub Date : 2024-09-03 DOI:10.1093/cercor/bhae365
Rashelle M Hoffman, Michael P Trevarrow, Brandon J Lew, Tony W Wilson, Max J Kurz
{"title":"Alpha oscillations during visual selective attention are aberrant in youth and adults with cerebral palsy.","authors":"Rashelle M Hoffman, Michael P Trevarrow, Brandon J Lew, Tony W Wilson, Max J Kurz","doi":"10.1093/cercor/bhae365","DOIUrl":null,"url":null,"abstract":"<p><p>Our understanding of the neurobiology underlying cognitive dysfunction in persons with cerebral palsy is very limited, especially in the neurocognitive domain of visual selective attention. This investigation utilized magnetoencephalography and an Eriksen arrow-based flanker task to quantify the dynamics underlying selective attention in a cohort of youth and adults with cerebral palsy (n = 31; age range = 9 to 47 yr) and neurotypical controls (n = 38; age range = 11 to 49 yr). The magnetoencephalography data were transformed into the time-frequency domain to identify neural oscillatory responses and imaged using a beamforming approach. The behavioral results indicated that all participants exhibited a flanker effect (greater response time for the incongruent compared to congruent condition) and that individuals with cerebral palsy were slower and less accurate during task performance. We computed interference maps to focus on the attentional component and found aberrant alpha (8 to 14 Hz) oscillations in the right primary visual cortices in the group with cerebral palsy. Alpha and theta (4 to 7 Hz) oscillations were also seen in the left and right insula, and these oscillations varied with age across all participants. Overall, persons with cerebral palsy exhibit deficiencies in the cortical dynamics serving visual selective attention, but these aberrations do not appear to be uniquely affected by age.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374708/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae365","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Our understanding of the neurobiology underlying cognitive dysfunction in persons with cerebral palsy is very limited, especially in the neurocognitive domain of visual selective attention. This investigation utilized magnetoencephalography and an Eriksen arrow-based flanker task to quantify the dynamics underlying selective attention in a cohort of youth and adults with cerebral palsy (n = 31; age range = 9 to 47 yr) and neurotypical controls (n = 38; age range = 11 to 49 yr). The magnetoencephalography data were transformed into the time-frequency domain to identify neural oscillatory responses and imaged using a beamforming approach. The behavioral results indicated that all participants exhibited a flanker effect (greater response time for the incongruent compared to congruent condition) and that individuals with cerebral palsy were slower and less accurate during task performance. We computed interference maps to focus on the attentional component and found aberrant alpha (8 to 14 Hz) oscillations in the right primary visual cortices in the group with cerebral palsy. Alpha and theta (4 to 7 Hz) oscillations were also seen in the left and right insula, and these oscillations varied with age across all participants. Overall, persons with cerebral palsy exhibit deficiencies in the cortical dynamics serving visual selective attention, but these aberrations do not appear to be uniquely affected by age.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
患有脑瘫的青少年和成年人在视觉选择性注意过程中的α振荡出现异常。
我们对脑瘫患者认知功能障碍的神经生物学基础的了解非常有限,尤其是在视觉选择性注意的神经认知领域。这项研究利用脑磁图和基于埃里克森箭头的侧翼任务来量化一组青年和成年脑瘫患者(n = 31;年龄范围 = 9 至 47 岁)和神经典型对照组(n = 38;年龄范围 = 11 至 49 岁)的选择性注意力的动态变化。脑磁图数据被转换到时频域以识别神经振荡反应,并使用波束成形方法进行成像。行为结果表明,所有参与者都表现出侧翼效应(与一致条件相比,不一致条件下的反应时间更长),脑瘫患者在执行任务时反应更慢,准确性更低。我们计算了干扰图,重点研究了注意力部分,发现脑瘫患者右侧初级视觉皮层的阿尔法(8 至 14 赫兹)振荡异常。左右脑岛也出现了α和θ(4至7赫兹)振荡,所有参与者的这些振荡随年龄而变化。总体而言,脑瘫患者在视觉选择性注意的皮层动力学方面表现出缺陷,但这些畸变似乎并未受到年龄的独特影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
期刊最新文献
Individual differences in functional connectivity during suppression of imagined threat. When emotion and time meet from human and rodent perspectives: a central role for the amygdala? Introspective psychophysics for the study of subjective experience. Examining threat responses through a developmental lens. Causal relationship between cortical structural changes and onset of anxiety disorder: evidence from Mendelian randomization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1