Morning resting hypothalamus-dorsal striatum connectivity predicts individual differences in diurnal sleepiness accumulation

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2024-09-03 DOI:10.1016/j.neuroimage.2024.120833
{"title":"Morning resting hypothalamus-dorsal striatum connectivity predicts individual differences in diurnal sleepiness accumulation","authors":"","doi":"10.1016/j.neuroimage.2024.120833","DOIUrl":null,"url":null,"abstract":"<div><p>While the significance of obtaining restful sleep at night and maintaining daytime alertness is well recognized for human performance and overall well-being, substantial variations exist in the development of sleepiness during diurnal waking periods. Despite the established roles of the hypothalamus and striatum in sleep-wake regulation, the specific contributions of this neural circuit in regulating individual sleep homeostasis remain elusive. This study utilized resting-state functional magnetic resonance imaging (fMRI) and mathematical modeling to investigate the role of hypothalamus-striatum connectivity in subjective sleepiness variation in a cohort of 71 healthy adults under strictly controlled in-laboratory conditions. Mathematical modeling results revealed remarkable individual differences in subjective sleepiness accumulation patterns measured by the Karolinska Sleepiness Scale (KSS). Brain imaging data demonstrated that morning hypothalamic connectivity to the dorsal striatum significantly predicts the individual accumulation of subjective sleepiness from morning to evening, while no such correlation was observed for the hypothalamus-ventral striatum connectivity. These findings underscore the distinct roles of hypothalamic connectivity to the dorsal and ventral striatum in individual sleep homeostasis, suggesting that hypothalamus-dorsal striatum circuit may be a promising target for interventions mitigating excessive sleepiness and promoting alertness.</p></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1053811924003306/pdfft?md5=744904aa89fd11c5e907aece831f3a9f&pid=1-s2.0-S1053811924003306-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811924003306","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

While the significance of obtaining restful sleep at night and maintaining daytime alertness is well recognized for human performance and overall well-being, substantial variations exist in the development of sleepiness during diurnal waking periods. Despite the established roles of the hypothalamus and striatum in sleep-wake regulation, the specific contributions of this neural circuit in regulating individual sleep homeostasis remain elusive. This study utilized resting-state functional magnetic resonance imaging (fMRI) and mathematical modeling to investigate the role of hypothalamus-striatum connectivity in subjective sleepiness variation in a cohort of 71 healthy adults under strictly controlled in-laboratory conditions. Mathematical modeling results revealed remarkable individual differences in subjective sleepiness accumulation patterns measured by the Karolinska Sleepiness Scale (KSS). Brain imaging data demonstrated that morning hypothalamic connectivity to the dorsal striatum significantly predicts the individual accumulation of subjective sleepiness from morning to evening, while no such correlation was observed for the hypothalamus-ventral striatum connectivity. These findings underscore the distinct roles of hypothalamic connectivity to the dorsal and ventral striatum in individual sleep homeostasis, suggesting that hypothalamus-dorsal striatum circuit may be a promising target for interventions mitigating excessive sleepiness and promoting alertness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
早晨静息下丘脑-背侧纹状体连通性可预测昼夜嗜睡累积的个体差异。
尽管人们已充分认识到夜间获得充足睡眠和白天保持警觉对人类表现和整体健康的重要性,但在昼醒期间嗜睡的发展却存在很大差异。尽管下丘脑和纹状体在睡眠-觉醒调节中的作用已被证实,但这一神经回路在调节个体睡眠稳态中的具体作用仍然难以捉摸。本研究利用静息态功能磁共振成像(fMRI)和数学建模技术,在严格控制的实验室条件下,研究了71名健康成年人的下丘脑-纹状体连通性在主观嗜睡变化中的作用。数学建模结果显示,通过卡罗林斯卡嗜睡量表(KSS)测量的主观嗜睡累积模式存在显著的个体差异。脑成像数据表明,早晨下丘脑与背侧纹状体的连接可显著预测个体从早到晚主观嗜睡感的累积,而下丘脑与腹侧纹状体的连接则没有这种相关性。这些发现强调了下丘脑与背侧纹状体和腹侧纹状体的连接在个体睡眠平衡中的不同作用,表明下丘脑-背侧纹状体回路可能是缓解过度嗜睡和提高警觉性的干预目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Individual contralesional recruitment in the context of structural reserve in early motor reorganization after stroke Semi-analytic three-shell forward calculation for magnetoencephalography Relationships between brain structure-function coupling in normal aging and cognition: A cross-ethnicity population-based study Distinct neural pathway and its information flow for blind individual's Braille reading Source imaging method based on diagonal covariance bases and its applications to OPM-MEG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1