{"title":"Diversity of soybean rhizobia in Northeast China and their application.","authors":"Jia-Xin Tian, Si-Yi Liu, Wen-Fu Wang, Feng Zheng, Li-Li Han, Li-Mei Zhang","doi":"10.13287/j.1001-9332.202407.011","DOIUrl":null,"url":null,"abstract":"<p><p>Biological nitrogen fixation is the main source of nitrogen in ecosystems. The diversity of soil rhizobia and their effects on soybeans need further research. In this study, we collected soybean rhizosphere samples from eight sites in the black soil soybean planting area in Northeast China. A total of 94 strains of bacteria were isolated and identified using the 16S rRNA and symbiotic genes (<i>nodC, nifH</i>) analysis, of which 70 strains were identified as rhizobia belonging to the genus <i>Bradyrhizobium</i>. To further validate the application effects of rhizobia, we selec-ted seven representative indigenous rhizobia based on the results of phylogenetic analysis, and conducted laboratory experiments to determine their nodulation and the impacts on soybeans. The results showed that, compared to the control without rhizobial inoculation, all the seven indigenous rhizobia exhibited good promoting and nodulation abilities. Among them, strains H7-L22 and H34-L6 performed the best, with the former significantly increasing plant height by 25.7% and the latter increasing root nodule dry weight by 20.9% to 67.1% compared to other indi-genous rhizobia treatments. We tested these two efficient rhizobia strains as soybean rhizobial inoculants in field experiments. The promoting effect of mixed rhizobial inoculants was significantly better than single ones. Compared to the control without inoculation, soybean yield increased by 8.4% with the strain H7-L22 treatment and by 17.9% with the mixed inoculant treatment. Additionally, there was a significant increase in the number of four-seed pods in soybeans. In conclusion, the application of rhizobial inoculants can significantly increase soybean yield, thereby reducing dependence on nitrogen fertilizer during soybean production, improving soil health, and promoting green development in agriculture in the black soil region of Northeast China.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 7","pages":"1850-1858"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用生态学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13287/j.1001-9332.202407.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Biological nitrogen fixation is the main source of nitrogen in ecosystems. The diversity of soil rhizobia and their effects on soybeans need further research. In this study, we collected soybean rhizosphere samples from eight sites in the black soil soybean planting area in Northeast China. A total of 94 strains of bacteria were isolated and identified using the 16S rRNA and symbiotic genes (nodC, nifH) analysis, of which 70 strains were identified as rhizobia belonging to the genus Bradyrhizobium. To further validate the application effects of rhizobia, we selec-ted seven representative indigenous rhizobia based on the results of phylogenetic analysis, and conducted laboratory experiments to determine their nodulation and the impacts on soybeans. The results showed that, compared to the control without rhizobial inoculation, all the seven indigenous rhizobia exhibited good promoting and nodulation abilities. Among them, strains H7-L22 and H34-L6 performed the best, with the former significantly increasing plant height by 25.7% and the latter increasing root nodule dry weight by 20.9% to 67.1% compared to other indi-genous rhizobia treatments. We tested these two efficient rhizobia strains as soybean rhizobial inoculants in field experiments. The promoting effect of mixed rhizobial inoculants was significantly better than single ones. Compared to the control without inoculation, soybean yield increased by 8.4% with the strain H7-L22 treatment and by 17.9% with the mixed inoculant treatment. Additionally, there was a significant increase in the number of four-seed pods in soybeans. In conclusion, the application of rhizobial inoculants can significantly increase soybean yield, thereby reducing dependence on nitrogen fertilizer during soybean production, improving soil health, and promoting green development in agriculture in the black soil region of Northeast China.