Machine learning analysis of contrast-enhanced ultrasound (CEUS) for the diagnosis of acute graft dysfunction in kidney transplant recipients.

Tudor Moisoiu, Alina Daciana Elec, Adriana Milena Muntean, Alexandru Florin Badea, Anca Budusan, Bogdan Stancu, Gheorghiță Iacob, Antal Oana, Alexandra Andries, Razvan Zaro, Mihai A Socaciu, Radu Ion Badea, Gabriel C Oniscu, Florin Ioan Elec
{"title":"Machine learning analysis of contrast-enhanced ultrasound (CEUS) for the diagnosis of acute graft dysfunction in kidney transplant recipients.","authors":"Tudor Moisoiu, Alina Daciana Elec, Adriana Milena Muntean, Alexandru Florin Badea, Anca Budusan, Bogdan Stancu, Gheorghiță Iacob, Antal Oana, Alexandra Andries, Razvan Zaro, Mihai A Socaciu, Radu Ion Badea, Gabriel C Oniscu, Florin Ioan Elec","doi":"10.11152/mu-4430","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The aim of the study was to develop machine learning algorithms (MLA) for diagnosing acute graft dysfunction (AGD) in kidney transplant recipients based on contrast-enhanced ultrasound (CEUS) analysis of the graft.Materials and methods: This prospective study involved 71 patients with kidney transplant undergoing CEUS during follow-up. AGD wasdefined as an increase in serum creatinine levels of at least 25% compared to the baseline of the last three months. The control group consisted of patients with stable kidney graft function (SGF). The top five CEUS parameters that achieved the best discrimination between the AGD and SGF groups were selected based on ANOVA testing and then employed as input for training MLA (naïve Bayes (NB), k-nearest neighbors (k-NN), and logistic regression (LR)). The models were validated by leave-one-out cross-validation.</p><p><strong>Results: </strong>Among the 111 CEUS analyses, 21 corresponded to the AGD group and 90 to the SGF group. CEUS analyses yielded 44 parameters, from which five were selected: the wash out rate in segmental arteries,time to peak in segmental arteries, medullary mean transit time, renal mean transit time, and medullary time to fall. These five parameters were employed as input for MLA, yielding an AUROC of 0.68 for NB and k-NN and 0.72 for LR. The inclusion of graft survival in the MLA significantly improved discrimination accuracy, yielding an AUROC of 0.79 for NB, 0.76 for k-NN,and 0.81 for LR.</p><p><strong>Conclusions: </strong>The use of MLA represents a promising strategy for analyzing CEUS-derived parameters in the setting AGD.</p>","PeriodicalId":94138,"journal":{"name":"Medical ultrasonography","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical ultrasonography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11152/mu-4430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: The aim of the study was to develop machine learning algorithms (MLA) for diagnosing acute graft dysfunction (AGD) in kidney transplant recipients based on contrast-enhanced ultrasound (CEUS) analysis of the graft.Materials and methods: This prospective study involved 71 patients with kidney transplant undergoing CEUS during follow-up. AGD wasdefined as an increase in serum creatinine levels of at least 25% compared to the baseline of the last three months. The control group consisted of patients with stable kidney graft function (SGF). The top five CEUS parameters that achieved the best discrimination between the AGD and SGF groups were selected based on ANOVA testing and then employed as input for training MLA (naïve Bayes (NB), k-nearest neighbors (k-NN), and logistic regression (LR)). The models were validated by leave-one-out cross-validation.

Results: Among the 111 CEUS analyses, 21 corresponded to the AGD group and 90 to the SGF group. CEUS analyses yielded 44 parameters, from which five were selected: the wash out rate in segmental arteries,time to peak in segmental arteries, medullary mean transit time, renal mean transit time, and medullary time to fall. These five parameters were employed as input for MLA, yielding an AUROC of 0.68 for NB and k-NN and 0.72 for LR. The inclusion of graft survival in the MLA significantly improved discrimination accuracy, yielding an AUROC of 0.79 for NB, 0.76 for k-NN,and 0.81 for LR.

Conclusions: The use of MLA represents a promising strategy for analyzing CEUS-derived parameters in the setting AGD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于诊断肾移植受者急性移植物功能障碍的对比增强超声(CEUS)机器学习分析。
目的:该研究旨在开发机器学习算法(MLA),用于根据肾移植移植物的对比增强超声波(CEUS)分析诊断肾移植受者的急性移植物功能障碍(AGD):这项前瞻性研究涉及 71 名在随访期间接受 CEUS 检查的肾移植患者。AGD定义为血清肌酐水平与过去三个月的基线相比至少增加25%。对照组由肾移植功能(SGF)稳定的患者组成。根据方差分析测试选出了在 AGD 组和 SGF 组之间实现最佳区分的前五个 CEUS 参数,然后将其作为训练 MLA(天真贝叶斯 (NB)、k-近邻 (k-NN) 和逻辑回归 (LR))的输入。结果:在 111 项 CEUS 分析中,21 项与 AGD 组相对应,90 项与 SGF 组相对应。CEUS 分析产生了 44 个参数,从中选出了五个:节段动脉冲出率、节段动脉达到峰值的时间、髓质平均通过时间、肾脏平均通过时间和髓质下降时间。将这五个参数作为 MLA 的输入,NB 和 k-NN 的 AUROC 为 0.68,LR 为 0.72。在 MLA 中加入移植物存活率可显著提高判别准确性,NB 的 AUROC 为 0.79,k-NN 为 0.76,LR 为 0.81:结论:使用 MLA 是在 AGD 病例中分析 CEUS 派生参数的一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diagnostic accuracy of transcranial ultrasonography for detecting stenosis in patients with acute ischaemic stroke: a systematic review and meta-analysis. Pancreatic cancer liver metastasis mimicking focal nodular hyperplasia. A case report. The impact of bowel preparation on MRI scans for confirming rectosigmoid endometriosis detected by transvaginal ultrasonography. Advancements and challenges in Shear-Wave Elastography of tendons: a comprehensive review. An [illustrative] update on pediatric emergency ultrasound: part 3 - cerebral, musculoskeletal and other applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1