Towards sustainable industry 4.0: A survey on greening IoE in 6G networks

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Ad Hoc Networks Pub Date : 2024-08-30 DOI:10.1016/j.adhoc.2024.103610
{"title":"Towards sustainable industry 4.0: A survey on greening IoE in 6G networks","authors":"","doi":"10.1016/j.adhoc.2024.103610","DOIUrl":null,"url":null,"abstract":"<div><p>The dramatic recent increase of the smart Internet of Everything (IoE) in Industry 4.0 has significantly increased energy consumption, carbon emissions, and global warming. IoE applications in Industry 4.0 face many challenges, including energy efficiency, heterogeneity, security, interoperability, and centralization. Therefore, Industry 4.0 in Beyond the Sixth-Generation (6G) networks demands moving to sustainable, green IoE and identifying efficient and emerging technologies to overcome sustainability challenges. Many advanced technologies and strategies efficiently solve issues by enhancing connectivity, interoperability, security, decentralization, and reliability. Greening IoE is a promising approach that focuses on improving energy efficiency, providing a high Quality of Service (QoS), and reducing carbon emissions to enhance the quality of life at a low cost. This survey provides a comprehensive overview of how advanced technologies can contribute to green IoE in the 6G network of Industry 4.0 applications. This survey provides a comprehensive overview of advanced technologies, including Blockchain, Digital Twins (DTs), Unmanned Aerial Vehicles (UAVs, a.k.a. drones), and Machine Learning (ML), to improve connectivity, QoS, and energy efficiency for green IoE in 6G networks. We evaluate the capability of each technology in greening IoE in Industry 4.0 applications and analyse the challenges and opportunities to make IoE greener using the discussed technologies.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S157087052400221X/pdfft?md5=4458c1f0b4d6c5d5d72267474fa6aea4&pid=1-s2.0-S157087052400221X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157087052400221X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The dramatic recent increase of the smart Internet of Everything (IoE) in Industry 4.0 has significantly increased energy consumption, carbon emissions, and global warming. IoE applications in Industry 4.0 face many challenges, including energy efficiency, heterogeneity, security, interoperability, and centralization. Therefore, Industry 4.0 in Beyond the Sixth-Generation (6G) networks demands moving to sustainable, green IoE and identifying efficient and emerging technologies to overcome sustainability challenges. Many advanced technologies and strategies efficiently solve issues by enhancing connectivity, interoperability, security, decentralization, and reliability. Greening IoE is a promising approach that focuses on improving energy efficiency, providing a high Quality of Service (QoS), and reducing carbon emissions to enhance the quality of life at a low cost. This survey provides a comprehensive overview of how advanced technologies can contribute to green IoE in the 6G network of Industry 4.0 applications. This survey provides a comprehensive overview of advanced technologies, including Blockchain, Digital Twins (DTs), Unmanned Aerial Vehicles (UAVs, a.k.a. drones), and Machine Learning (ML), to improve connectivity, QoS, and energy efficiency for green IoE in 6G networks. We evaluate the capability of each technology in greening IoE in Industry 4.0 applications and analyse the challenges and opportunities to make IoE greener using the discussed technologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向可持续的工业 4.0:6G 网络中的绿色物联网调查
最近,工业 4.0 中智能万物互联(IoE)的急剧增加大大增加了能源消耗、碳排放和全球变暖。工业 4.0 中的 IoE 应用面临许多挑战,包括能效、异构性、安全性、互操作性和集中化。因此,超越第六代(6G)网络的工业 4.0 要求转向可持续的绿色物联网,并确定高效的新兴技术来克服可持续性挑战。许多先进技术和战略通过增强连接性、互操作性、安全性、分散性和可靠性,有效地解决了各种问题。绿色物联网是一种前景广阔的方法,其重点是提高能源效率、提供高质量服务(QoS)和减少碳排放,从而以低成本提高生活质量。本调查全面概述了先进技术如何在工业 4.0 应用的 6G 网络中为绿色物联网做出贡献。本调查全面概述了先进技术,包括区块链、数字孪生(DTs)、无人机(UAVs,又称无人机)和机器学习(ML),以提高 6G 网络中绿色物联网的连接性、服务质量和能效。我们评估了每种技术在工业 4.0 应用中实现绿色物联网的能力,并分析了使用所讨论的技术使物联网更加绿色所面临的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
期刊最新文献
TAVA: Traceable anonymity-self-controllable V2X Authentication over dynamic multiple charging-service providers RL-based mobile edge computing scheme for high reliability low latency services in UAV-aided IIoT networks Editorial Board PLLM-CS: Pre-trained Large Language Model (LLM) for cyber threat detection in satellite networks A two-context-aware approach for navigation: A case study for vehicular route recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1