Characteristics of hollow micron zero valent iron and its transport properties in groundwater: Effect of key engineering parameters and retention mechanism
Chunyang Gao , Xianyuan Du , Jingjing Zhao , Jin Zheng , Quanwei Song , Jvfeng Li , Jiacai Xie , Wei Wei
{"title":"Characteristics of hollow micron zero valent iron and its transport properties in groundwater: Effect of key engineering parameters and retention mechanism","authors":"Chunyang Gao , Xianyuan Du , Jingjing Zhao , Jin Zheng , Quanwei Song , Jvfeng Li , Jiacai Xie , Wei Wei","doi":"10.1016/j.eti.2024.103815","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a hollow micron zero-valent iron (H-mZVI) was synthesized, and its transport and retention property in saturated porous media was determined via a series of column experiments. Furthermore, the maximum migration distance (L<sub>max</sub>) and sedimentation rate coefficient (K<sub>dep</sub>) models of H-mZVI in saturated porous media were established using statistical methods. The results revealed a distinct hollow structure in H-mZVI, with a density of 1.03±0.03 g/cm<sup>3</sup>, significantly lower than solid micron zero-valent iron (4.57±0.15 g/cm<sup>3</sup>). FTIR and XRD analyses indicated no formation of new functional groups on H-mZVI's surface, with iron being the main component. The column experiment demonstrated that the L<sub>max</sub> of H-mZVI in saturated porous media was 4.15 times that of solid micron zero-valent iron (mZVI) under the same conditions. The prediction model of L<sub>max</sub> aligned with the linear model, where L<sub>max</sub> correlated positively with particle size, injection velocity, and H-mZVI concentration, but inversely with ionic strength. Medium particle size and injection velocity were the main engineering parameters to control H-mZVI. The prediction model of K<sub>dep</sub> accorded with the quadratic model, and an interaction was observed between medium particle size and injection velocity, which jointly affected the deposition rate of H-mZVI. Moreover, the single particle capture coefficient (η<sub>0</sub>) was hereby calculated and analyzed using the T-E theory. Interception primarily governed the precipitation of H-mZVI in saturated porous media, with gravity sedimentation contributing minimally to η<sub>0</sub>.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103815"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424002918/pdfft?md5=53b60fa5b3acdc612e8f6b6d510d915e&pid=1-s2.0-S2352186424002918-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186424002918","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a hollow micron zero-valent iron (H-mZVI) was synthesized, and its transport and retention property in saturated porous media was determined via a series of column experiments. Furthermore, the maximum migration distance (Lmax) and sedimentation rate coefficient (Kdep) models of H-mZVI in saturated porous media were established using statistical methods. The results revealed a distinct hollow structure in H-mZVI, with a density of 1.03±0.03 g/cm3, significantly lower than solid micron zero-valent iron (4.57±0.15 g/cm3). FTIR and XRD analyses indicated no formation of new functional groups on H-mZVI's surface, with iron being the main component. The column experiment demonstrated that the Lmax of H-mZVI in saturated porous media was 4.15 times that of solid micron zero-valent iron (mZVI) under the same conditions. The prediction model of Lmax aligned with the linear model, where Lmax correlated positively with particle size, injection velocity, and H-mZVI concentration, but inversely with ionic strength. Medium particle size and injection velocity were the main engineering parameters to control H-mZVI. The prediction model of Kdep accorded with the quadratic model, and an interaction was observed between medium particle size and injection velocity, which jointly affected the deposition rate of H-mZVI. Moreover, the single particle capture coefficient (η0) was hereby calculated and analyzed using the T-E theory. Interception primarily governed the precipitation of H-mZVI in saturated porous media, with gravity sedimentation contributing minimally to η0.
期刊介绍:
Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas.
As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.