Excellent energy-storage performance in BNT-BT lead-free ceramics through optimized electromechanical breakdown

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-09-01 DOI:10.1016/j.mtphys.2024.101545
Liang Wang, Wenjun Cao, Cen Liang, Changyuan Wang, Hanyu Zhao, Chunchang Wang
{"title":"Excellent energy-storage performance in BNT-BT lead-free ceramics through optimized electromechanical breakdown","authors":"Liang Wang,&nbsp;Wenjun Cao,&nbsp;Cen Liang,&nbsp;Changyuan Wang,&nbsp;Hanyu Zhao,&nbsp;Chunchang Wang","doi":"10.1016/j.mtphys.2024.101545","DOIUrl":null,"url":null,"abstract":"<div><p>Dielectric capacitors with high recoverable energy storage density (<em>W</em><sub>rec</sub>) are in urgent demand for clean energy technologies. However, their lower breakdown strength (<em>E</em><sub>b</sub>) strongly limits their energy storage performance. We, herein, propose a facile method to enhance <em>E</em><sub>b</sub> by enhancing mechanical strength via second phase modulation. The efficiency of this method is validated in the (1-<em>x</em>)(0.94Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub>-0.06BaTiO<sub>3</sub>)-<em>x</em>Sr(Ta<sub>0.5</sub>Sb<sub>0.5</sub>)O<sub>3</sub> ((BNT-BT)-<em>x</em>STS, <em>x</em> = 0.1, 0.15, 0.2, 0.25, and 0.3) ceramics. The introduction of Sr(Ta<sub>0.5</sub>Sb<sub>0.5</sub>)O<sub>3</sub> (STS) increases the relaxor degree, refines grain size, and most importantly, creates a second phase of BiSb<sub>2</sub>O<sub>7</sub>, which hinders dislocation movement and improves mechanical strength. Our results show that the breakdown strength strongly depends on the mechanical strength. The highest hardness of 7.42 GPa accompanied by the largest <em>E</em><sub>b</sub> of 620 kV/cm was obtained in (BNT-BT)-0.25STS sample. The sample exhibits the best energy storage properties of a large <em>W</em><sub>rec</sub> = 8.3 J/cm<sup>3</sup>, a high efficiency of 82.3 %, and excellent temperature/frequency stability. Furthermore, the sample also exhibits good charge/discharge stability and ultra-fast transient discharge time (62.26 ns). This work provides a theoretical guidance for developing lead-free dielectrics with superior energy-storage performance.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"47 ","pages":"Article 101545"},"PeriodicalIF":10.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002219","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dielectric capacitors with high recoverable energy storage density (Wrec) are in urgent demand for clean energy technologies. However, their lower breakdown strength (Eb) strongly limits their energy storage performance. We, herein, propose a facile method to enhance Eb by enhancing mechanical strength via second phase modulation. The efficiency of this method is validated in the (1-x)(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-xSr(Ta0.5Sb0.5)O3 ((BNT-BT)-xSTS, x = 0.1, 0.15, 0.2, 0.25, and 0.3) ceramics. The introduction of Sr(Ta0.5Sb0.5)O3 (STS) increases the relaxor degree, refines grain size, and most importantly, creates a second phase of BiSb2O7, which hinders dislocation movement and improves mechanical strength. Our results show that the breakdown strength strongly depends on the mechanical strength. The highest hardness of 7.42 GPa accompanied by the largest Eb of 620 kV/cm was obtained in (BNT-BT)-0.25STS sample. The sample exhibits the best energy storage properties of a large Wrec = 8.3 J/cm3, a high efficiency of 82.3 %, and excellent temperature/frequency stability. Furthermore, the sample also exhibits good charge/discharge stability and ultra-fast transient discharge time (62.26 ns). This work provides a theoretical guidance for developing lead-free dielectrics with superior energy-storage performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过优化机电击穿实现 BNT-BT 无铅陶瓷的卓越储能性能
清洁能源技术迫切需要具有高可恢复储能密度(Wrec)的电介质电容器。然而,较低的击穿强度(Eb)严重限制了其储能性能。在此,我们提出了一种通过第二相调制增强机械强度来提高击穿强度的简便方法。这种方法的效率在 (1-x)(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-xSr(Ta0.5Sb0.5)O3 ((BNT-BT)-xSTS, x = 0.1, 0.15, 0.2, 0.25, and 0.3) 陶瓷中得到了验证。Sr(Ta0.5Sb0.5)O3(STS)的引入提高了弛豫度,细化了晶粒尺寸,最重要的是形成了 BiSb2O7 的第二相,从而阻碍了位错运动并提高了机械强度。我们的研究结果表明,击穿强度与机械强度密切相关。(BNT-BT)-0.25STS 样品的硬度最高,为 7.42 GPa,Eb 值最大,为 620 kV/cm。该样品具有最佳的储能特性,Wrec = 8.3 J/cm3,效率高达 82.3 %,并且具有出色的温度/频率稳定性。此外,该样品还具有良好的充放电稳定性和超快的瞬态放电时间(62.26 ns)。这项研究为开发具有卓越储能性能的无铅电介质提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Ultra-soft, foldable, wearable piezoelectric sensor based on the aligned BaTiO3 nanoparticles Mist CVD Technology for Gallium Oxide Deposition: A Review Atomic Imprint Crystallization: Externally-Templated Crystallization of Amorphous Silicon Achieving ultra-high resistivity and outstanding piezoelectric properties by co-substitution in CaBi2Nb2O9 ceramics Data-driven design of thermal-mechanical multifunctional metamaterials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1