Frequency-domain analysis of CMOS-driven interconnects utilizing doped multilayer graphene nanoribbons and mixed carbon nanotube bundles

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-08-31 DOI:10.1016/j.micrna.2024.207973
Tajinder Kaur , Aashish Kumar , Mayank Kumar Rai
{"title":"Frequency-domain analysis of CMOS-driven interconnects utilizing doped multilayer graphene nanoribbons and mixed carbon nanotube bundles","authors":"Tajinder Kaur ,&nbsp;Aashish Kumar ,&nbsp;Mayank Kumar Rai","doi":"10.1016/j.micrna.2024.207973","DOIUrl":null,"url":null,"abstract":"<div><p>A frequency-domain model is developed to analyze isolated interconnects of multilayer graphene-nanoribbon (MLGNR) and mixed carbon-nanotube bundle (MCB) driven by CMOS gates. The model derived is founded on an equivalent-single-conductor model of MLGNR and MCB that takes thermal considerations into account (i.e. TD-ESC). The model includes the derivation of transfer function of interconnect to estimate its delay and bandwidth performance. The attained results, reveals that among the neutral MLGNR (N-MLGNR), intercalation doped MLGNR (ID-MLGNR) intercalated with FeCl<sub>3</sub>, MCB and <em>Cu</em> interconnects, FeCl<sub>3</sub> ID-MLGNR achieves the best bandwidth efficiency. At a global interconnect length of 1 mm, FeCl<sub>3</sub> ID-MLGNR outperforms N-MLGNR, MCB, and <em>Cu</em> in terms of bandwidth with an improved bandwidth value of 12.2 GHz, 7 GHz, and 61.4 GHz, respectively. Further, employing the proposed CMOS-gate-driven model, for FeCl<sub>3</sub> ID-MLGNR, bandwidth is improved by nearly 7.52 × at global length (∼1 mm) in relation to the linear resistance model. Additionally, TD-ESC dependency of the proposed model reveals that FeCl<sub>3</sub> ID-MLGNR becomes more stable as interconnect resistance increases.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"195 ","pages":"Article 207973"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277301232400222X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

A frequency-domain model is developed to analyze isolated interconnects of multilayer graphene-nanoribbon (MLGNR) and mixed carbon-nanotube bundle (MCB) driven by CMOS gates. The model derived is founded on an equivalent-single-conductor model of MLGNR and MCB that takes thermal considerations into account (i.e. TD-ESC). The model includes the derivation of transfer function of interconnect to estimate its delay and bandwidth performance. The attained results, reveals that among the neutral MLGNR (N-MLGNR), intercalation doped MLGNR (ID-MLGNR) intercalated with FeCl3, MCB and Cu interconnects, FeCl3 ID-MLGNR achieves the best bandwidth efficiency. At a global interconnect length of 1 mm, FeCl3 ID-MLGNR outperforms N-MLGNR, MCB, and Cu in terms of bandwidth with an improved bandwidth value of 12.2 GHz, 7 GHz, and 61.4 GHz, respectively. Further, employing the proposed CMOS-gate-driven model, for FeCl3 ID-MLGNR, bandwidth is improved by nearly 7.52 × at global length (∼1 mm) in relation to the linear resistance model. Additionally, TD-ESC dependency of the proposed model reveals that FeCl3 ID-MLGNR becomes more stable as interconnect resistance increases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用掺杂多层石墨烯纳米带和混合碳纳米管束的 CMOS 驱动型互连的频域分析
本文开发了一个频域模型,用于分析 CMOS 栅极驱动的多层石墨烯-纳米碳(MLGNR)和混合碳-纳米管束(MCB)的隔离互连。推导出的模型建立在 MLGNR 和 MCB 的等效单导体模型基础上,该模型考虑了热因素(即 TD-ESC)。该模型包括互连传输函数的推导,以估算其延迟和带宽性能。研究结果表明,在中性 MLGNR(N-MLGNR)、掺杂 FeCl3 的插层 MLGNR(ID-MLGNR)、MCB 和铜互连器件中,FeCl3 ID-MLGNR 的带宽效率最高。在全局互连长度为 1 毫米时,FeCl3 ID-MLGNR 的带宽优于 N-MLGNR、MCB 和 Cu,带宽值分别提高了 12.2 GHz、7 GHz 和 61.4 GHz。此外,采用所提出的 CMOS 栅极驱动模型,FeCl3 ID-MLGNR 在全局长度(1 毫米)上的带宽比线性电阻模型提高了近 7.52 倍。此外,所提模型的 TD-ESC 依赖性表明,随着互连电阻的增加,FeCl3 ID-MLGNR 变得更加稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Research on RF performance of GaN HEMT with graded Al composition AlGaN back-barrier Corrigendum to “Evaluation of sensitivity in a vertically misaligned double-gate electrolyte-insulator-semiconductor extended source tunnel FET as pH sensor” [Micro Nanostruct. 196 (2024) 208005] The impact of barrier modulation on carriers transport in GaN quantum well infrared detectors Interference enhanced SPR-mediated visible-light responsive photocatalysis of periodically ordered ZnO nanorod arrays decorated with Au nanoparticles Optimization of efficiency of CsPbI2Br by using different electron transport and hole transport layers: A DFT and SCAPS-1D simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1