{"title":"Frequency-domain analysis of CMOS-driven interconnects utilizing doped multilayer graphene nanoribbons and mixed carbon nanotube bundles","authors":"Tajinder Kaur , Aashish Kumar , Mayank Kumar Rai","doi":"10.1016/j.micrna.2024.207973","DOIUrl":null,"url":null,"abstract":"<div><p>A frequency-domain model is developed to analyze isolated interconnects of multilayer graphene-nanoribbon (MLGNR) and mixed carbon-nanotube bundle (MCB) driven by CMOS gates. The model derived is founded on an equivalent-single-conductor model of MLGNR and MCB that takes thermal considerations into account (i.e. TD-ESC). The model includes the derivation of transfer function of interconnect to estimate its delay and bandwidth performance. The attained results, reveals that among the neutral MLGNR (N-MLGNR), intercalation doped MLGNR (ID-MLGNR) intercalated with FeCl<sub>3</sub>, MCB and <em>Cu</em> interconnects, FeCl<sub>3</sub> ID-MLGNR achieves the best bandwidth efficiency. At a global interconnect length of 1 mm, FeCl<sub>3</sub> ID-MLGNR outperforms N-MLGNR, MCB, and <em>Cu</em> in terms of bandwidth with an improved bandwidth value of 12.2 GHz, 7 GHz, and 61.4 GHz, respectively. Further, employing the proposed CMOS-gate-driven model, for FeCl<sub>3</sub> ID-MLGNR, bandwidth is improved by nearly 7.52 × at global length (∼1 mm) in relation to the linear resistance model. Additionally, TD-ESC dependency of the proposed model reveals that FeCl<sub>3</sub> ID-MLGNR becomes more stable as interconnect resistance increases.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"195 ","pages":"Article 207973"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277301232400222X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
A frequency-domain model is developed to analyze isolated interconnects of multilayer graphene-nanoribbon (MLGNR) and mixed carbon-nanotube bundle (MCB) driven by CMOS gates. The model derived is founded on an equivalent-single-conductor model of MLGNR and MCB that takes thermal considerations into account (i.e. TD-ESC). The model includes the derivation of transfer function of interconnect to estimate its delay and bandwidth performance. The attained results, reveals that among the neutral MLGNR (N-MLGNR), intercalation doped MLGNR (ID-MLGNR) intercalated with FeCl3, MCB and Cu interconnects, FeCl3 ID-MLGNR achieves the best bandwidth efficiency. At a global interconnect length of 1 mm, FeCl3 ID-MLGNR outperforms N-MLGNR, MCB, and Cu in terms of bandwidth with an improved bandwidth value of 12.2 GHz, 7 GHz, and 61.4 GHz, respectively. Further, employing the proposed CMOS-gate-driven model, for FeCl3 ID-MLGNR, bandwidth is improved by nearly 7.52 × at global length (∼1 mm) in relation to the linear resistance model. Additionally, TD-ESC dependency of the proposed model reveals that FeCl3 ID-MLGNR becomes more stable as interconnect resistance increases.