Antonio Bevilacqua, Barbara Speranza, Daniela Campaniello, Angela Racioppo, Alessandra Accettulli, Alessandro De Santis, Milena Sinigaglia, Maria Rosaria Corbo
{"title":"Effect of ultrasound-attenuation on technological and functional properties of two strains of Lactiplantibacillus plantarum isolated from table olives","authors":"Antonio Bevilacqua, Barbara Speranza, Daniela Campaniello, Angela Racioppo, Alessandra Accettulli, Alessandro De Santis, Milena Sinigaglia, Maria Rosaria Corbo","doi":"10.1016/j.ultsonch.2024.107057","DOIUrl":null,"url":null,"abstract":"<div><p>While probiotics have a wide range of beneficial properties, they can also negatively affect the taste or aroma of foods products by resulting in the phenomenon of post-acidification. Ultrasound (US) is a tool to modulate the metabolism of probiotic bacteria, counteracting post-acidification and improving the performance and functional properties of microorganisms without affecting their viability. The purpose of this paper was to evaluate the effect of 10 different combinations of power (20 and 40 %) and duration (2, 4, 6, 8 and 10 min) of US treatment on two functional strains of <em>Lactiplantibacillus plantarum</em> (c16 and c19) isolated from table olives, with the aim of understanding how, some of the main functional and technological traits (viability, acidification, growth profile under different conditions, antibiotic resistance, viability at pH 2.0 and 0.3 % bile salts), were affected. It was found that the effects were strain dependent, and the best results were obtained for strain c19 in the combinations at 20 % for 8 and 10 min and 40 % for 2 min, where an improvement in functional characteristics was found, with some effects on biofilm stability, inhibition of acidification, without adverse results on some technological properties.</p></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"110 ","pages":"Article 107057"},"PeriodicalIF":8.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350417724003055/pdfft?md5=9d526d3f8c322e4230899145f49996ca&pid=1-s2.0-S1350417724003055-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724003055","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
While probiotics have a wide range of beneficial properties, they can also negatively affect the taste or aroma of foods products by resulting in the phenomenon of post-acidification. Ultrasound (US) is a tool to modulate the metabolism of probiotic bacteria, counteracting post-acidification and improving the performance and functional properties of microorganisms without affecting their viability. The purpose of this paper was to evaluate the effect of 10 different combinations of power (20 and 40 %) and duration (2, 4, 6, 8 and 10 min) of US treatment on two functional strains of Lactiplantibacillus plantarum (c16 and c19) isolated from table olives, with the aim of understanding how, some of the main functional and technological traits (viability, acidification, growth profile under different conditions, antibiotic resistance, viability at pH 2.0 and 0.3 % bile salts), were affected. It was found that the effects were strain dependent, and the best results were obtained for strain c19 in the combinations at 20 % for 8 and 10 min and 40 % for 2 min, where an improvement in functional characteristics was found, with some effects on biofilm stability, inhibition of acidification, without adverse results on some technological properties.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.