Rubab Sarfraz , S.V.G.N. Priyadarshani , Ali Fakhar , Muhammad Israr Khan , Zohaib Ul Hassan , Pil Joo Kim , Gil Won Kim
{"title":"Unlocking plant defense: Exploring the nexus of biochar and Ca2+ signaling","authors":"Rubab Sarfraz , S.V.G.N. Priyadarshani , Ali Fakhar , Muhammad Israr Khan , Zohaib Ul Hassan , Pil Joo Kim , Gil Won Kim","doi":"10.1016/j.stress.2024.100584","DOIUrl":null,"url":null,"abstract":"<div><p>The interaction between biochar application and calcium ions (Ca<sup>2+</sup>) in plants, in terms of activating plant defense mechanism would be useful to improve plant resilience and sustainable agriculture. This review aims to highlight the possible connection between biochar-induced changes in soil physicochemical properties, microbial interactions, and Ca<sup>2+</sup> dynamics, ultimately leading to promote the plant defense mechanisms. We are also interested to discuss the role of Ca<sup>2+</sup> signaling in coordinating plant responses to various biotic and abiotic stresses such as pathogen and insects attacks, cold or heat stress and drought stress as well as how Ca<sup>2+</sup> fluxes, calcium-binding proteins, and ion channels are influenced by biochar application in the soil environment. Furthermore, we examine the impact of biochar on plant Ca<sup>2+</sup> signaling pathways and how it can prime defense genes and strengthen call wall barriers to improve plant immunity. Despite significant progress, there is a need for interdisciplinary collaboration to fully sort out the mechanism of Ca<sup>2+</sup> signaling in plants and induction of Ca<sup>2+</sup> ions by biochar induction in soil environment. Advanced imaging techniques, proteomics and omics approaches could be helpful to unlock the complex interaction between biochar application and Ca<sup>2+</sup> signaling. Overall, this review contributes substantially to the literature by describing the relationship between biochar and Ca<sup>2+</sup> signaling and providing insights into novel approaches for enhancing plant defense mechanisms and development of sustainable agricultural solutions.</p></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100584"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667064X24002379/pdfft?md5=3b897f375d0cf3f3db4ced915d72ad05&pid=1-s2.0-S2667064X24002379-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24002379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction between biochar application and calcium ions (Ca2+) in plants, in terms of activating plant defense mechanism would be useful to improve plant resilience and sustainable agriculture. This review aims to highlight the possible connection between biochar-induced changes in soil physicochemical properties, microbial interactions, and Ca2+ dynamics, ultimately leading to promote the plant defense mechanisms. We are also interested to discuss the role of Ca2+ signaling in coordinating plant responses to various biotic and abiotic stresses such as pathogen and insects attacks, cold or heat stress and drought stress as well as how Ca2+ fluxes, calcium-binding proteins, and ion channels are influenced by biochar application in the soil environment. Furthermore, we examine the impact of biochar on plant Ca2+ signaling pathways and how it can prime defense genes and strengthen call wall barriers to improve plant immunity. Despite significant progress, there is a need for interdisciplinary collaboration to fully sort out the mechanism of Ca2+ signaling in plants and induction of Ca2+ ions by biochar induction in soil environment. Advanced imaging techniques, proteomics and omics approaches could be helpful to unlock the complex interaction between biochar application and Ca2+ signaling. Overall, this review contributes substantially to the literature by describing the relationship between biochar and Ca2+ signaling and providing insights into novel approaches for enhancing plant defense mechanisms and development of sustainable agricultural solutions.