{"title":"Exploring the influence of fertilization on bacterial community fluctuations in Ulva cultivation","authors":"","doi":"10.1016/j.algal.2024.103688","DOIUrl":null,"url":null,"abstract":"<div><p><em>Ulva</em> are green algae known for their biomass accumulation on the coast due to eutrophication. As these algae are able to bioremediate nitrate loadings, they are used as biofilters of enriched waters in aquaculture. <em>Ulva</em> form a holobiont by naturally hosting various microbes, also involved in nitrate metabolism. However, little is known about fluctuations of the <em>Ulva</em> holobiont in fertilized waters over time. We surveyed fluctuations of the bacterial community associated with <em>Ulva lacinulata</em> cultivation, with (enriched, ENR) and without (seawater only, SW) nitrate-based fertilization. <em>Ulva</em> biofilm and cultivation water were regularly collected and contextual parameters (nutrients, temperature, pH) were regularly measured over twelve weeks. Metabarcoding of the 16S rDNA in the biofilm and water compartments revealed that fertilization led to higher alpha-diversity. Diversity patterns indicated that samples clustered together for each compartment in SW or ENR. Fertilization led to a different genus composition in the water after 5 days, and it led to a more even community in the biofilm, from few very dominant genera at the beginning of the experiment to more less dominant genera at the end. The core microbiota in the biofilm common to SW and ENR was mainly composed of genera involved in the host fitness and physiology. Core genera common to SW and ENR in the water were likely beneficiating from the culture conditions. Microbiota's predicted metabolic pathways revealed a heightened capacity for nitrate reduction in ENR. These results may serve as a foundation to understand nitrate loadings impact on <em>Ulva</em>'s microbiota in eutrophication conditions.</p></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221192642400300X/pdfft?md5=797d09dc80a0f797fc255f07c1c2dfd3&pid=1-s2.0-S221192642400300X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221192642400300X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ulva are green algae known for their biomass accumulation on the coast due to eutrophication. As these algae are able to bioremediate nitrate loadings, they are used as biofilters of enriched waters in aquaculture. Ulva form a holobiont by naturally hosting various microbes, also involved in nitrate metabolism. However, little is known about fluctuations of the Ulva holobiont in fertilized waters over time. We surveyed fluctuations of the bacterial community associated with Ulva lacinulata cultivation, with (enriched, ENR) and without (seawater only, SW) nitrate-based fertilization. Ulva biofilm and cultivation water were regularly collected and contextual parameters (nutrients, temperature, pH) were regularly measured over twelve weeks. Metabarcoding of the 16S rDNA in the biofilm and water compartments revealed that fertilization led to higher alpha-diversity. Diversity patterns indicated that samples clustered together for each compartment in SW or ENR. Fertilization led to a different genus composition in the water after 5 days, and it led to a more even community in the biofilm, from few very dominant genera at the beginning of the experiment to more less dominant genera at the end. The core microbiota in the biofilm common to SW and ENR was mainly composed of genera involved in the host fitness and physiology. Core genera common to SW and ENR in the water were likely beneficiating from the culture conditions. Microbiota's predicted metabolic pathways revealed a heightened capacity for nitrate reduction in ENR. These results may serve as a foundation to understand nitrate loadings impact on Ulva's microbiota in eutrophication conditions.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment