{"title":"Influence of hydrothermal processing conditions on the functionality of Phaeodactylum tricornutum extracts","authors":"","doi":"10.1016/j.algal.2024.103667","DOIUrl":null,"url":null,"abstract":"<div><p>Microalgae are an underutilized biomass source of nutritionally valuable extracts with promising texturizing capacities that can be used for food applications. This also requires the development of environmentally friendly extraction technologies. Hydrothermal processing was used in this study to investigate the effects of temperature (up to 225 °C) on the extracts from the diatom <em>Phaeodactylum tricornutum</em>. The relationship between protein and polysaccharides' presence and functionality was assessed, based on structure, composition, bioactivity, and rheological behavior. An optimal condition of non-isothermal processing at 120 °C resulted in the extract with gelling capacity (at 20 % <em>w</em>/w extract concentration). This extract is rich in carbohydrates in oligosaccharide form (9 g per 100 g extract) and protein (16 g per 100 g extract), which indicates nutritional relevance and possible prebiotic effects. Moreover, after an additional purification step with food-grade solvents, this extract was able to gel at 5 % <em>w</em>/w concentration. These combined with its significant antioxidant activity (over 100 μmol Trolox equivalents per gram of extract in all studied conditions, using the ABTS method) point towards new possibilities for the application of <em>Phaeodactylum tricornutum</em> extracts in novel clean-label vegan foods. Overall, these findings suggest that the novel approach proposed in this work, based on hydrothermal processing, is feasible and compatible with the need for the application of simple purification steps with food-grade solvents. Furthermore, it reinforced the relevance of the carbohydrate fractions and carbohydrate-protein interactions from microalgae.</p></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211926424002790/pdfft?md5=bb718f61e887e11e0c49769bd80d32a5&pid=1-s2.0-S2211926424002790-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424002790","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microalgae are an underutilized biomass source of nutritionally valuable extracts with promising texturizing capacities that can be used for food applications. This also requires the development of environmentally friendly extraction technologies. Hydrothermal processing was used in this study to investigate the effects of temperature (up to 225 °C) on the extracts from the diatom Phaeodactylum tricornutum. The relationship between protein and polysaccharides' presence and functionality was assessed, based on structure, composition, bioactivity, and rheological behavior. An optimal condition of non-isothermal processing at 120 °C resulted in the extract with gelling capacity (at 20 % w/w extract concentration). This extract is rich in carbohydrates in oligosaccharide form (9 g per 100 g extract) and protein (16 g per 100 g extract), which indicates nutritional relevance and possible prebiotic effects. Moreover, after an additional purification step with food-grade solvents, this extract was able to gel at 5 % w/w concentration. These combined with its significant antioxidant activity (over 100 μmol Trolox equivalents per gram of extract in all studied conditions, using the ABTS method) point towards new possibilities for the application of Phaeodactylum tricornutum extracts in novel clean-label vegan foods. Overall, these findings suggest that the novel approach proposed in this work, based on hydrothermal processing, is feasible and compatible with the need for the application of simple purification steps with food-grade solvents. Furthermore, it reinforced the relevance of the carbohydrate fractions and carbohydrate-protein interactions from microalgae.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment