Printable ionic liquid modified cellulose acetate for sustainable chromic and resistive temperature sensing

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Sustainable Materials and Technologies Pub Date : 2024-09-01 DOI:10.1016/j.susmat.2024.e01101
{"title":"Printable ionic liquid modified cellulose acetate for sustainable chromic and resistive temperature sensing","authors":"","doi":"10.1016/j.susmat.2024.e01101","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainable technologies and the circular economy paradigms require a reduction of waste, and therefore, research is focusing on the development of sustainable materials and devices capable of being reused, refurbished or recycled.</p><p>In the present work, printable ionic liquid (IL)-based polymer composites with thermochromic properties have been developed through a more sustainable approach to mitigate the negative impact of advanced functional materials and processes. For this purpose, composite films based on a natural polymer, cellulose acetate (CA), and different contents of the thermochromic IL, bis(1-butyl-3-methylimidazolium) tetrachloronickelate ([Bmim]<sub>2</sub>[NiCl<sub>4</sub>]), have been processed by a solvent casting method for the development of sustainable temperature sensors. The composites are transparent at room temperature, but when exposed to a temperature of 50 °C, the colour changes to blue. Incorporating the thermochromic IL led to the appearance of pores in the material's structure, which increased with increasing IL concentration. Additionally, the Young Modulus decreases with increasing IL concentration, reaching a value of 840 ± 158 MPa) for the sample with 40 % wt. Contrarily, the electrical conductivity strongly increases with the highest DC electrical conductivity, with a maximum conductivity of 1.1 × 10–5 ± 1.5 × 10–6 S.cm-1 obtained for the sample with 40 % wt. of [Bmim]<sub>2</sub>[NiCl<sub>4</sub>].</p><p>As a proof of concept, the potential applicability of the developed natural-based nanoparticle-free materials was demonstrated with a CA/40[Bmim]<sub>2</sub>[NiCl<sub>4</sub>] sample by the development of printable thermochromic temperature sensors for thermotherapy applications in the temperature range from 33 °C to 50 °C.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214993724002811/pdfft?md5=6cddfa0e50389cfaa8cb3decb64ee631&pid=1-s2.0-S2214993724002811-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724002811","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Sustainable technologies and the circular economy paradigms require a reduction of waste, and therefore, research is focusing on the development of sustainable materials and devices capable of being reused, refurbished or recycled.

In the present work, printable ionic liquid (IL)-based polymer composites with thermochromic properties have been developed through a more sustainable approach to mitigate the negative impact of advanced functional materials and processes. For this purpose, composite films based on a natural polymer, cellulose acetate (CA), and different contents of the thermochromic IL, bis(1-butyl-3-methylimidazolium) tetrachloronickelate ([Bmim]2[NiCl4]), have been processed by a solvent casting method for the development of sustainable temperature sensors. The composites are transparent at room temperature, but when exposed to a temperature of 50 °C, the colour changes to blue. Incorporating the thermochromic IL led to the appearance of pores in the material's structure, which increased with increasing IL concentration. Additionally, the Young Modulus decreases with increasing IL concentration, reaching a value of 840 ± 158 MPa) for the sample with 40 % wt. Contrarily, the electrical conductivity strongly increases with the highest DC electrical conductivity, with a maximum conductivity of 1.1 × 10–5 ± 1.5 × 10–6 S.cm-1 obtained for the sample with 40 % wt. of [Bmim]2[NiCl4].

As a proof of concept, the potential applicability of the developed natural-based nanoparticle-free materials was demonstrated with a CA/40[Bmim]2[NiCl4] sample by the development of printable thermochromic temperature sensors for thermotherapy applications in the temperature range from 33 °C to 50 °C.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可印刷离子液体改性醋酸纤维素,用于可持续色度和电阻温度传感
可持续技术和循环经济模式要求减少浪费,因此,研究重点是开发可重复使用、翻新或回收的可持续材料和设备。在本研究中,通过一种更具可持续性的方法,开发出了具有热致变色特性的可印刷离子液体(IL)聚合物复合材料,以减轻先进功能材料和工艺的负面影响。为此,我们采用溶剂浇铸法加工了基于天然聚合物醋酸纤维素(CA)和不同含量的热致变色离子液体四氯镍酸双(1-丁基-3-甲基咪唑)([Bmim]2[NiCl4])的复合薄膜,用于开发可持续温度传感器。这种复合材料在室温下是透明的,但当暴露在 50 °C 的温度下时,颜色会变为蓝色。加入热致变色 IL 后,材料结构中出现了孔隙,孔隙随着 IL 浓度的增加而增大。此外,杨氏模量随着 IL 浓度的增加而降低,重量百分比为 40% 的样品的杨氏模量值为 840 ± 158 MPa)。作为概念验证,利用 CA/40[Bmim]2[NiCl4] 样品开发了可打印的热致变色温度传感器,用于 33 °C 至 50 °C 温度范围内的热疗应用,从而证明了所开发的天然基纳米无颗粒材料的潜在适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
期刊最新文献
Potential and challenges of recycled polymer plastics and natural waste materials for additive manufacturing Advances and prospects of sulfur quantum dots in food sensing applications A new method to recycle Li-ion batteries with laser materials processing technology Printable ionic liquid modified cellulose acetate for sustainable chromic and resistive temperature sensing Tailoring SrFeO3 cathode with Ta and F allows high performance for proton-conducting solid oxide fuel cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1