Impact of the Scaling of LGS and LG on the On-State Breakdown Voltage of InAlN/GaN HFETs With Localized Fin Under the Gate Electrode

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of the Electron Devices Society Pub Date : 2024-08-26 DOI:10.1109/JEDS.2024.3449798
Yatexu Patel;Pouya Valizadeh
{"title":"Impact of the Scaling of LGS and LG on the On-State Breakdown Voltage of InAlN/GaN HFETs With Localized Fin Under the Gate Electrode","authors":"Yatexu Patel;Pouya Valizadeh","doi":"10.1109/JEDS.2024.3449798","DOIUrl":null,"url":null,"abstract":"In this manuscript, we have investigated the impact of the scaling of the gate-source length (LGS) and gate length (LG) on the on-state breakdown voltage (BVon) of metallic-face InAlN/AlN/GaN heterostructure field effect transistors (HFETs) having fin structures only under the gate and those having them stretched from source to drain. The results show that the downscaling of LGS and LG augments the electron velocity in the source-access region. Due to current conservation, the higher carrier velocity in the source-access region for the devices having shorter LGS and LG induces a higher electron density under the gated-channel. From what is theoretically observed, the presence of higher electron density close to the boundary with the velocity saturation region at the drain edge of the gate in devices having shorter LGS and LG does seem to initiate the device breakdown at lower drain voltages, leading to the deterioration of the on-state breakdown voltage.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"645-650"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10646346","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10646346/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this manuscript, we have investigated the impact of the scaling of the gate-source length (LGS) and gate length (LG) on the on-state breakdown voltage (BVon) of metallic-face InAlN/AlN/GaN heterostructure field effect transistors (HFETs) having fin structures only under the gate and those having them stretched from source to drain. The results show that the downscaling of LGS and LG augments the electron velocity in the source-access region. Due to current conservation, the higher carrier velocity in the source-access region for the devices having shorter LGS and LG induces a higher electron density under the gated-channel. From what is theoretically observed, the presence of higher electron density close to the boundary with the velocity saturation region at the drain edge of the gate in devices having shorter LGS and LG does seem to initiate the device breakdown at lower drain voltages, leading to the deterioration of the on-state breakdown voltage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
栅电极下有局部鳍片的 InAlN/GaN HFET 的 LGS 和 LG 缩放对通态击穿电压的影响
在本手稿中,我们研究了栅-源长度(LGS)和栅长度(LG)的缩放对金属面 InAlN/AlN/GaN 异质结构场效应晶体管(HFET)导通击穿电压(BVon)的影响。结果表明,LGS 和 LG 的缩减提高了源极-汲极区域的电子速度。由于电流守恒,LGS 和 LG 较短的器件在源极接入区的载流子速度较高,从而导致栅极沟道下的电子密度较高。从理论上观察,在 LGS 和 LG 较短的器件中,靠近栅极漏极边缘速度饱和区边界的较高电子密度似乎会在较低的漏极电压下引发器件击穿,从而导致导通击穿电压恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
期刊最新文献
Wide Band Gap Semiconductors for Automotive Applications Exploration of the exciting world of multifunctional oxide-based electronic devices: from material to system-level applications Call for Nominations for Editor-in-Chief Announcing an IEEE/Optica Publishing Group Journal of Lightwave Technology Special Issue on: OFS-29 2024 Index IEEE Journal of the Electron Devices Society Vol. 12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1