{"title":"Single-shot 3D Reconstruction by Fusion of Fourier Transform Profilometry and Line Clustering","authors":"ZhenZhou Wang","doi":"10.1109/JSTSP.2024.3400010","DOIUrl":null,"url":null,"abstract":"Due to its better accuracy and resolution, Fourier transform profilometry (FTP) is more widely used than the line clustering (LC) based structured light (SL) 3D reconstruction technique. However, it has the bottleneck problem of the unavoidable phase unwrapping errors at places of occlusions and large discontinuities. In this paper, we propose a composite pattern based on the red, green and blue (RGB) channels of the color image to fuse FTP and LC for more robust single-shot reconstruction. The red channel contains the sinusoidal pattern for FTP and the rest of the channels contain the line patterns for LC. Therefore, the intervals between the adjacent lines in the line pattern could be selected as large as possible for robust clustering while the accuracy of FTP will not be affected by the large intervals of the lines. Based on the clustered lines, the phase wrap boundary errors caused by occlusions and large discontinuities are corrected. At last, a one-dimensional phase wrap boundary guided phase unwrapping approach is proposed to solve the bottleneck problem of spatial phase unwrapping for FTP. Experimental results showed that the proposed fusion method could reconstruct the complex shapes with occlusions and large discontinuities more robust than FTP or LC based SL alone.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 3","pages":"325-335"},"PeriodicalIF":8.7000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10529527/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its better accuracy and resolution, Fourier transform profilometry (FTP) is more widely used than the line clustering (LC) based structured light (SL) 3D reconstruction technique. However, it has the bottleneck problem of the unavoidable phase unwrapping errors at places of occlusions and large discontinuities. In this paper, we propose a composite pattern based on the red, green and blue (RGB) channels of the color image to fuse FTP and LC for more robust single-shot reconstruction. The red channel contains the sinusoidal pattern for FTP and the rest of the channels contain the line patterns for LC. Therefore, the intervals between the adjacent lines in the line pattern could be selected as large as possible for robust clustering while the accuracy of FTP will not be affected by the large intervals of the lines. Based on the clustered lines, the phase wrap boundary errors caused by occlusions and large discontinuities are corrected. At last, a one-dimensional phase wrap boundary guided phase unwrapping approach is proposed to solve the bottleneck problem of spatial phase unwrapping for FTP. Experimental results showed that the proposed fusion method could reconstruct the complex shapes with occlusions and large discontinuities more robust than FTP or LC based SL alone.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.