Jing Tian, Feng Qian, Yanguang Zhang, Weibing Li, Jiarun Li, Shiqiang Chen, Lei Wang
{"title":"Z-Scheme membrane CdZnS/TiO2 heterojunction photocatalyst for efficient photocatalytic removal of Microcystis aeruginosa under simulated sunlight: Adjustable suspended depth and flexible assembly","authors":"Jing Tian, Feng Qian, Yanguang Zhang, Weibing Li, Jiarun Li, Shiqiang Chen, Lei Wang","doi":"10.1016/j.jmst.2024.08.021","DOIUrl":null,"url":null,"abstract":"<p>The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts. Loading photocatalyst on magnetic or floatable carriers is the most popular method for overcoming the above inadequacies. In this work, a CdZnS/TiO<sub>2</sub> membrane photocatalyst with adjustable suspended depth (include floating) and flexible assembly is designed, which is less prone to dislodgement due to in situ synthesis and has a wider range of applicability than previously reported photocatalysts. The photocatalytic removal of <em>Microcystis aeruginosa</em> revealed that the suspended depth and distribution format of the CdZnS/TiO<sub>2</sub> membrane photocatalysts have striking effects on the photocatalytic removal performance of <em>Microcystis aeruginosa</em>, the photocatalytic removal efficiency of CdZnS/TiO<sub>2</sub>-2 membrane photocatalysts for <em>Microcystis aeruginosa</em> could reach to 98.6 % in 60 min when the photocatalysts assembled in the form of 3 × 3 arrays suspended at a depth of 2 cm from the liquid surface. A tiny amount of TiO<sub>2</sub> loading allows the formation of Z-Scheme heterojunction, resulting in accelerating the separation efficiency of photogenerated carriers, preserving the photogenerated electrons and holes with stronger reduction and oxidation ability and inhabiting the photo-corrosion of CdZnS.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.021","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts. Loading photocatalyst on magnetic or floatable carriers is the most popular method for overcoming the above inadequacies. In this work, a CdZnS/TiO2 membrane photocatalyst with adjustable suspended depth (include floating) and flexible assembly is designed, which is less prone to dislodgement due to in situ synthesis and has a wider range of applicability than previously reported photocatalysts. The photocatalytic removal of Microcystis aeruginosa revealed that the suspended depth and distribution format of the CdZnS/TiO2 membrane photocatalysts have striking effects on the photocatalytic removal performance of Microcystis aeruginosa, the photocatalytic removal efficiency of CdZnS/TiO2-2 membrane photocatalysts for Microcystis aeruginosa could reach to 98.6 % in 60 min when the photocatalysts assembled in the form of 3 × 3 arrays suspended at a depth of 2 cm from the liquid surface. A tiny amount of TiO2 loading allows the formation of Z-Scheme heterojunction, resulting in accelerating the separation efficiency of photogenerated carriers, preserving the photogenerated electrons and holes with stronger reduction and oxidation ability and inhabiting the photo-corrosion of CdZnS.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.