Yuhang Huang, Nashmia Zia, Yingshan Ma, Terek Li, Gilbert C Walker, Hani E Naguib, Eugenia Kumacheva
{"title":"Colloidal Hydrogel with Staged Sequestration and Release of Molecules Undergoing Competitive Binding.","authors":"Yuhang Huang, Nashmia Zia, Yingshan Ma, Terek Li, Gilbert C Walker, Hani E Naguib, Eugenia Kumacheva","doi":"10.1021/acsnano.4c09342","DOIUrl":null,"url":null,"abstract":"<p><p>Competitive binding of distinct molecules in the hydrogel interior can facilitate dynamic exchange between the hydrogel and the surrounding environment. The ability to control the rates of sequestration and release of these molecules would enhance the hydrogel's functionality and enable targeting of a specific task. Here, we report the design of a colloidal hydrogel with two distinct pore dimensions to achieve staged, diffusion-controlled scavenging and release dynamics of molecules undergoing competitive binding. The staged scavenging and release strategy was shown for CpG oligodeoxynucleotide (ODN) and human epidermal growth factor (hEGF), two molecules exhibiting different affinities to the quaternary ammonium groups of the hydrogel. Fast ODN scavenging from the ambient environment occurred via diffusion through submicrometer-size hydrogel pores, while delayed hEGF release from the hydrogel was governed by its diffusion through nanometer-size pores. The results of the experiments were in agreement with simulation results. The significance of staged ODN-hEGF exchange was highlighted by the dual anti-inflammation and tissue proliferation hydrogel performance.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09342","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Competitive binding of distinct molecules in the hydrogel interior can facilitate dynamic exchange between the hydrogel and the surrounding environment. The ability to control the rates of sequestration and release of these molecules would enhance the hydrogel's functionality and enable targeting of a specific task. Here, we report the design of a colloidal hydrogel with two distinct pore dimensions to achieve staged, diffusion-controlled scavenging and release dynamics of molecules undergoing competitive binding. The staged scavenging and release strategy was shown for CpG oligodeoxynucleotide (ODN) and human epidermal growth factor (hEGF), two molecules exhibiting different affinities to the quaternary ammonium groups of the hydrogel. Fast ODN scavenging from the ambient environment occurred via diffusion through submicrometer-size hydrogel pores, while delayed hEGF release from the hydrogel was governed by its diffusion through nanometer-size pores. The results of the experiments were in agreement with simulation results. The significance of staged ODN-hEGF exchange was highlighted by the dual anti-inflammation and tissue proliferation hydrogel performance.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.