{"title":"Electrolyte Design Strategies for Aqueous Sodium-Ion Batteries: Progress and Prospects.","authors":"Zhao Xing, Wenxi Zhao, Binkai Yu, Yuqiu Wang, Limin Zhou, Pan Xiong, Mingzhe Chen, Junwu Zhu","doi":"10.1002/smll.202405442","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium-ion batteries (SIBs) have emerged as one of today's most attractive battery technologies due to the scarcity of lithium resources. Aqueous sodium-ion batteries (ASIBs) have been extensively researched for their security, cost-effectiveness, and eco-friendly properties. However, aqueous electrolytes are extremely limited in practical applications because of the narrow electrochemical stability window (ESW) with extremely poor low-temperature performance. The first part of this review is an in-depth discussion of the reasons for the inferior performance of aqueous electrolytes. Next, research progress in extending the electrochemical stabilization window and improving low-temperature performance using various methods such as \"water-in-salt\", eutectic, and additive-modified electrolytes is highlighted. Considering the shortcomings of existing solid electrolyte interphase (SEI) theory, recent research progress on the solvation behavior of electrolytes is summarized based on the solvation theory, which elucidates the correlation between the solvation structure and the electrochemical performance, and three methods to upgrade the electrochemical performance by modulating the solvation behavior are introduced in detail. Finally, common design ideas for high-temperature resistant aqueous electrolytes that are hoped to help future aqueous batteries with wide temperature ranges are summarized.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202405442","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium-ion batteries (SIBs) have emerged as one of today's most attractive battery technologies due to the scarcity of lithium resources. Aqueous sodium-ion batteries (ASIBs) have been extensively researched for their security, cost-effectiveness, and eco-friendly properties. However, aqueous electrolytes are extremely limited in practical applications because of the narrow electrochemical stability window (ESW) with extremely poor low-temperature performance. The first part of this review is an in-depth discussion of the reasons for the inferior performance of aqueous electrolytes. Next, research progress in extending the electrochemical stabilization window and improving low-temperature performance using various methods such as "water-in-salt", eutectic, and additive-modified electrolytes is highlighted. Considering the shortcomings of existing solid electrolyte interphase (SEI) theory, recent research progress on the solvation behavior of electrolytes is summarized based on the solvation theory, which elucidates the correlation between the solvation structure and the electrochemical performance, and three methods to upgrade the electrochemical performance by modulating the solvation behavior are introduced in detail. Finally, common design ideas for high-temperature resistant aqueous electrolytes that are hoped to help future aqueous batteries with wide temperature ranges are summarized.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.