Li Tang, Lin-yan Wang, Jian-hui Han, Ji-fei Ye, Jun Yuan
{"title":"Theoretical study on multi-perspective interaction analysis of ADN and ADN-H2O-CH3OH solutions","authors":"Li Tang, Lin-yan Wang, Jian-hui Han, Ji-fei Ye, Jun Yuan","doi":"10.1007/s00894-024-06130-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Revealing the mechanism of intermolecular interactions in dinitroamine ammonium (ADN)-based liquid propellants and exploring the reasons for their performance changes, multi-perspective interaction analyses of ADN and ADN-water (H<sub>2</sub>O)-methanol (CH<sub>3</sub>OH) solutions have been conducted via theoretical methods. The band structure, density of states (DOS), surface electrostatic potential (ESP), Hirshfeld surface, reduced density gradient (RDG), AIM topological analysis, and detonation performance were studied and the results showed that both the ADN and ADN-H<sub>2</sub>O-CH<sub>3</sub>OH solutions had hydrogen bonds and van der Waals interactions. By introducing the small molecules H<sub>2</sub>O and CH<sub>3</sub>OH, the detonation performance of the ADN-H<sub>2</sub>O-CH<sub>3</sub>OH solution slightly decreased, but its sensitivity also decreased. Overall, the comprehensive performance of the ADN-H<sub>2</sub>O-CH<sub>3</sub>OH solution has improved, and the application range has expanded. These results are helpful for obtaining a deeper understanding of ADN-based liquid propellants at the atomic level and contribute to the development of new liquid propellants.</p><h3>Methods</h3><p>The ADN and ADN-H<sub>2</sub>O-CH<sub>3</sub>OH solutions were constructed by Amorphous cell module and optimized via GGA with PBE methods in the Dmol3 module of the Materials Studio, and their electronic properties were calculated. Hirshfeld surfaces were generated with CrystalExplorer 3.0. A topological analysis of a variety of molecular clusters was performed via QTAIM. The QTAIM and RDG analyses in this work were generated by Multiwfn 3.0.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06130-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Revealing the mechanism of intermolecular interactions in dinitroamine ammonium (ADN)-based liquid propellants and exploring the reasons for their performance changes, multi-perspective interaction analyses of ADN and ADN-water (H2O)-methanol (CH3OH) solutions have been conducted via theoretical methods. The band structure, density of states (DOS), surface electrostatic potential (ESP), Hirshfeld surface, reduced density gradient (RDG), AIM topological analysis, and detonation performance were studied and the results showed that both the ADN and ADN-H2O-CH3OH solutions had hydrogen bonds and van der Waals interactions. By introducing the small molecules H2O and CH3OH, the detonation performance of the ADN-H2O-CH3OH solution slightly decreased, but its sensitivity also decreased. Overall, the comprehensive performance of the ADN-H2O-CH3OH solution has improved, and the application range has expanded. These results are helpful for obtaining a deeper understanding of ADN-based liquid propellants at the atomic level and contribute to the development of new liquid propellants.
Methods
The ADN and ADN-H2O-CH3OH solutions were constructed by Amorphous cell module and optimized via GGA with PBE methods in the Dmol3 module of the Materials Studio, and their electronic properties were calculated. Hirshfeld surfaces were generated with CrystalExplorer 3.0. A topological analysis of a variety of molecular clusters was performed via QTAIM. The QTAIM and RDG analyses in this work were generated by Multiwfn 3.0.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.