{"title":"5-Fluorouracil-loaded green chitosan nanoparticles/ guar gum nanocomposite hydrogel in controlled drug delivery","authors":"Ganeswar Dalei , Debasis Jena , Subhraseema Das","doi":"10.1016/j.carres.2024.109257","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years nanotechnologies have been applied to human health with promising results, especially in the field of drug delivery. Polymeric nanoparticles (NPs) have garnered much importance in controlled drug delivery owing to their size. Chitosan (Cs) is a well-recognized biopolymer and Cs NPs have been widely explored in drug delivery. Nonetheless, reports pertaining to green synthesis of Cs NPs are scarce. Thus, in this study, green synthesis of Cs NPs was accomplished from raw mango peel extract. Spherical Cs NPs with positively charged surface of 33.4 mV was accomplished by this process. Cs NPs, in varied content, were integrated in a guar gum network matrix resulting in a nanocomposite hydrogel. The mechanical and thermal stability of the hydrogel improved upon addition of Cs NPs. The hydrogel exhibited smart swelling, good antioxidant and anti-inflammatory propensities. Cs NPs encapsulating 5-Fluorouracil demonstrated a controlled release drug profile in the colorectum and the kinetics implied the anomalous nature of drug release mechanism. The exposure of the drug-loaded nanocomposite hydrogel displayed improved anticancer effects in HT-29 colon cancer cells. Taken altogether, this study puts forth the greater efficacy of Cs NPs in controlled drug delivery for anticancer therapy.</p></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"545 ","pages":"Article 109257"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621524002362","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years nanotechnologies have been applied to human health with promising results, especially in the field of drug delivery. Polymeric nanoparticles (NPs) have garnered much importance in controlled drug delivery owing to their size. Chitosan (Cs) is a well-recognized biopolymer and Cs NPs have been widely explored in drug delivery. Nonetheless, reports pertaining to green synthesis of Cs NPs are scarce. Thus, in this study, green synthesis of Cs NPs was accomplished from raw mango peel extract. Spherical Cs NPs with positively charged surface of 33.4 mV was accomplished by this process. Cs NPs, in varied content, were integrated in a guar gum network matrix resulting in a nanocomposite hydrogel. The mechanical and thermal stability of the hydrogel improved upon addition of Cs NPs. The hydrogel exhibited smart swelling, good antioxidant and anti-inflammatory propensities. Cs NPs encapsulating 5-Fluorouracil demonstrated a controlled release drug profile in the colorectum and the kinetics implied the anomalous nature of drug release mechanism. The exposure of the drug-loaded nanocomposite hydrogel displayed improved anticancer effects in HT-29 colon cancer cells. Taken altogether, this study puts forth the greater efficacy of Cs NPs in controlled drug delivery for anticancer therapy.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".