Lauren J Pacitti, Joshua Laberge, Kaitlyn E Shikaze, Patrick J Drouin, Michael E Tschakovsky, Chris McGlory, Brendon J Gurd
{"title":"Physiological and perceptual response to critical power anchored HIIT: a sex comparison study.","authors":"Lauren J Pacitti, Joshua Laberge, Kaitlyn E Shikaze, Patrick J Drouin, Michael E Tschakovsky, Chris McGlory, Brendon J Gurd","doi":"10.1007/s00421-024-05600-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The aim of this study was to test the hypothesis that using threshold-based high intensity interval training (HIIT<sub>THR</sub>) prescribed at an intensity above critical power (CP) in males and females matched for maximal oxygen uptake ( <math><mover><mtext>V</mtext> <mo>˙</mo></mover> </math> O<sub>2</sub>max) (mL/kg lean mass/min) will yield no sex differences in time to fatigue.</p><p><strong>Methods: </strong>Thirteen males (mean ± SD: 22.0 ± 2.48 years, 181 ± 8.36 cm, 78.8 ± 11.4 kg) and eleven females (mean ± SD: 22.4 ± 2.69 years, 170 ± 5.73 cm, 65.2 ± 7.66 kg) initially undertook an incremental test to exhaustion to determine <math><mover><mtext>V</mtext> <mo>˙</mo></mover> </math> O<sub>2</sub>max, and a CP test. Then, one HIIT session (4 min on, 2 min off) was performed to exhaustion at the work rate associated with 105%CP. Acute physiological and cardiovascular responses were recorded.</p><p><strong>Results: </strong>No sex differences were recorded in time to fatigue [Female vs. Male (min): 36.0 ± 18.5 vs. 39.3 ± 16.3], heart rate, rate of perceived exertion, or %oxygenated [haem]. Females displayed lower %deoxygenated [haem] at the end of interval 1, 2, 3, and 4 [Female vs. Male (%): 89.4 ± 21.2 vs. 110 ± 27.3, 92.0 ± 21.5 vs. 115 ± 27.6, 87.1 ± 23.7 vs. 112 ± 22.8, 88.9 ± 26.3 vs. 113 ± 23.5]. Large interindividual variability in performance, and physiological and perceptual response were present despite the use of threshold-based prescription.</p><p><strong>Conclusion: </strong>The present study suggests that threshold-based prescription may help standardize the mean response exercise across sexes but does not eliminate physiological or perceptual variability. Furthermore, the lack of sex differences in TTF was accompanied by greater %deoxy[haem] in males, indicating tissue oxygenation is an unlikely determinant of HIIT performance. This study has been retrospectively registered at Trial Registration https://doi.org/10.17605/OSF.IO/KZVGC January 17th, 2023, following data collection but prior to data analyses.</p>","PeriodicalId":12005,"journal":{"name":"European Journal of Applied Physiology","volume":" ","pages":"317-326"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00421-024-05600-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The aim of this study was to test the hypothesis that using threshold-based high intensity interval training (HIITTHR) prescribed at an intensity above critical power (CP) in males and females matched for maximal oxygen uptake ( O2max) (mL/kg lean mass/min) will yield no sex differences in time to fatigue.
Methods: Thirteen males (mean ± SD: 22.0 ± 2.48 years, 181 ± 8.36 cm, 78.8 ± 11.4 kg) and eleven females (mean ± SD: 22.4 ± 2.69 years, 170 ± 5.73 cm, 65.2 ± 7.66 kg) initially undertook an incremental test to exhaustion to determine O2max, and a CP test. Then, one HIIT session (4 min on, 2 min off) was performed to exhaustion at the work rate associated with 105%CP. Acute physiological and cardiovascular responses were recorded.
Results: No sex differences were recorded in time to fatigue [Female vs. Male (min): 36.0 ± 18.5 vs. 39.3 ± 16.3], heart rate, rate of perceived exertion, or %oxygenated [haem]. Females displayed lower %deoxygenated [haem] at the end of interval 1, 2, 3, and 4 [Female vs. Male (%): 89.4 ± 21.2 vs. 110 ± 27.3, 92.0 ± 21.5 vs. 115 ± 27.6, 87.1 ± 23.7 vs. 112 ± 22.8, 88.9 ± 26.3 vs. 113 ± 23.5]. Large interindividual variability in performance, and physiological and perceptual response were present despite the use of threshold-based prescription.
Conclusion: The present study suggests that threshold-based prescription may help standardize the mean response exercise across sexes but does not eliminate physiological or perceptual variability. Furthermore, the lack of sex differences in TTF was accompanied by greater %deoxy[haem] in males, indicating tissue oxygenation is an unlikely determinant of HIIT performance. This study has been retrospectively registered at Trial Registration https://doi.org/10.17605/OSF.IO/KZVGC January 17th, 2023, following data collection but prior to data analyses.
期刊介绍:
The European Journal of Applied Physiology (EJAP) aims to promote mechanistic advances in human integrative and translational physiology. Physiology is viewed broadly, having overlapping context with related disciplines such as biomechanics, biochemistry, endocrinology, ergonomics, immunology, motor control, and nutrition. EJAP welcomes studies dealing with physical exercise, training and performance. Studies addressing physiological mechanisms are preferred over descriptive studies. Papers dealing with animal models or pathophysiological conditions are not excluded from consideration, but must be clearly relevant to human physiology.