An outbreak of Shiga toxin-producing Escherichia coli (STEC) O157:H7 associated with contaminated lettuce and the cascading risks from climate change, the United Kingdom, August to September 2022.
Neil Cunningham, Claire Jenkins, Sarah Williams, Joanna Garner, Bernd Eggen, Amy Douglas, Tina Potter, Anthony Wilson, Giovanni Leonardi, Lesley Larkin, Susan Hopkins
{"title":"An outbreak of Shiga toxin-producing <i>Escherichia coli</i> (STEC) O157:H7 associated with contaminated lettuce and the cascading risks from climate change, the United Kingdom, August to September 2022.","authors":"Neil Cunningham, Claire Jenkins, Sarah Williams, Joanna Garner, Bernd Eggen, Amy Douglas, Tina Potter, Anthony Wilson, Giovanni Leonardi, Lesley Larkin, Susan Hopkins","doi":"10.2807/1560-7917.ES.2024.29.36.2400161","DOIUrl":null,"url":null,"abstract":"<p><p>Shiga-toxin producing <i>Escherichia coli</i> (STEC) O157 is a food-borne pathogen which causes gastrointestinal illness in humans. Ruminants are considered the main reservoir of infection, and STEC exceedance has been associated with heavy rainfall. In September 2022, a large outbreak of STEC O157:H7 was identified in the United Kingdom (UK). A national-level investigation was undertaken to identify the source of the outbreak and inform risk mitigation strategies. Whole genome sequencing (WGS) was used to identify outbreak cases. Overall, 259 cases with illness onset dates between 5 August and 12 October 2022, were confirmed across the UK. Epidemiological investigations supported a UK grown, nationally distributed, short shelf-life food item as the source of the outbreak. Analytical epidemiology and food chain analysis suggested lettuce as the likely vehicle of infection. Food supply chain tracing identified Grower X as the likely implicated producer. Independent of the food chain investigations, a novel geospatial analysis triangulating meteorological, flood risk, animal density and land use data was developed, also identifying Grower X as the likely source. Novel geospatial analysis and One Health approaches are potential tools for upstream data analysis to predict and prevent contamination events before they occur and to support evidence generation in outbreak investigations.</p>","PeriodicalId":12161,"journal":{"name":"Eurosurveillance","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378517/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurosurveillance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2807/1560-7917.ES.2024.29.36.2400161","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Shiga-toxin producing Escherichia coli (STEC) O157 is a food-borne pathogen which causes gastrointestinal illness in humans. Ruminants are considered the main reservoir of infection, and STEC exceedance has been associated with heavy rainfall. In September 2022, a large outbreak of STEC O157:H7 was identified in the United Kingdom (UK). A national-level investigation was undertaken to identify the source of the outbreak and inform risk mitigation strategies. Whole genome sequencing (WGS) was used to identify outbreak cases. Overall, 259 cases with illness onset dates between 5 August and 12 October 2022, were confirmed across the UK. Epidemiological investigations supported a UK grown, nationally distributed, short shelf-life food item as the source of the outbreak. Analytical epidemiology and food chain analysis suggested lettuce as the likely vehicle of infection. Food supply chain tracing identified Grower X as the likely implicated producer. Independent of the food chain investigations, a novel geospatial analysis triangulating meteorological, flood risk, animal density and land use data was developed, also identifying Grower X as the likely source. Novel geospatial analysis and One Health approaches are potential tools for upstream data analysis to predict and prevent contamination events before they occur and to support evidence generation in outbreak investigations.
期刊介绍:
Eurosurveillance is a European peer-reviewed journal focusing on the epidemiology, surveillance, prevention, and control of communicable diseases relevant to Europe.It is a weekly online journal, with 50 issues per year published on Thursdays. The journal includes short rapid communications, in-depth research articles, surveillance reports, reviews, and perspective papers. It excels in timely publication of authoritative papers on ongoing outbreaks or other public health events. Under special circumstances when current events need to be urgently communicated to readers for rapid public health action, e-alerts can be released outside of the regular publishing schedule. Additionally, topical compilations and special issues may be provided in PDF format.