Modeling memory B cell responses in a lymphoid organ-chip to evaluate mRNA vaccine boosting.

IF 12.6 1区 医学 Q1 IMMUNOLOGY Journal of Experimental Medicine Pub Date : 2024-10-07 Epub Date: 2024-09-06 DOI:10.1084/jem.20240289
Raphaël Jeger-Madiot, Delphine Planas, Isabelle Staropoli, Hippolyte Debarnot, Jérôme Kervevan, Héloïse Mary, Camilla Collina, Barbara F Fonseca, Rémy Robinot, Stacy Gellenoncourt, Olivier Schwartz, Lorna Ewart, Michael Bscheider, Samy Gobaa, Lisa A Chakrabarti
{"title":"Modeling memory B cell responses in a lymphoid organ-chip to evaluate mRNA vaccine boosting.","authors":"Raphaël Jeger-Madiot, Delphine Planas, Isabelle Staropoli, Hippolyte Debarnot, Jérôme Kervevan, Héloïse Mary, Camilla Collina, Barbara F Fonseca, Rémy Robinot, Stacy Gellenoncourt, Olivier Schwartz, Lorna Ewart, Michael Bscheider, Samy Gobaa, Lisa A Chakrabarti","doi":"10.1084/jem.20240289","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting the immunogenicity of candidate vaccines in humans remains a challenge. To address this issue, we developed a lymphoid organ-chip (LO chip) model based on a microfluidic chip seeded with human PBMC at high density within a 3D collagen matrix. Perfusion of the SARS-CoV-2 spike protein mimicked a vaccine boost by inducing a massive amplification of spike-specific memory B cells, plasmablast differentiation, and spike-specific antibody secretion. Features of lymphoid tissue, including the formation of activated CD4+ T cell/B cell clusters and the emigration of matured plasmablasts, were recapitulated in the LO chip. Importantly, myeloid cells were competent at capturing and expressing mRNA vectored by lipid nanoparticles, enabling the assessment of responses to mRNA vaccines. Comparison of on-chip responses to Wuhan monovalent and Wuhan/Omicron bivalent mRNA vaccine boosts showed equivalent induction of Omicron neutralizing antibodies, pointing at immune imprinting as reported in vivo. The LO chip thus represents a versatile platform suited to the preclinical evaluation of vaccine-boosting strategies.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":null,"pages":null},"PeriodicalIF":12.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383861/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20240289","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the immunogenicity of candidate vaccines in humans remains a challenge. To address this issue, we developed a lymphoid organ-chip (LO chip) model based on a microfluidic chip seeded with human PBMC at high density within a 3D collagen matrix. Perfusion of the SARS-CoV-2 spike protein mimicked a vaccine boost by inducing a massive amplification of spike-specific memory B cells, plasmablast differentiation, and spike-specific antibody secretion. Features of lymphoid tissue, including the formation of activated CD4+ T cell/B cell clusters and the emigration of matured plasmablasts, were recapitulated in the LO chip. Importantly, myeloid cells were competent at capturing and expressing mRNA vectored by lipid nanoparticles, enabling the assessment of responses to mRNA vaccines. Comparison of on-chip responses to Wuhan monovalent and Wuhan/Omicron bivalent mRNA vaccine boosts showed equivalent induction of Omicron neutralizing antibodies, pointing at immune imprinting as reported in vivo. The LO chip thus represents a versatile platform suited to the preclinical evaluation of vaccine-boosting strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在淋巴器官芯片中模拟记忆性 B 细胞反应,以评估 mRNA 疫苗的增效作用。
预测候选疫苗在人体中的免疫原性仍然是一项挑战。为了解决这个问题,我们开发了一种淋巴器官芯片(LO 芯片)模型,该模型基于在三维胶原基质中高密度播种人 PBMC 的微流控芯片。灌注 SARS-CoV-2 穗状病毒蛋白可诱导穗状病毒特异性记忆 B 细胞大量扩增、浆细胞分化和穗状病毒特异性抗体分泌,从而模拟疫苗强化。LO 芯片再现了淋巴组织的特征,包括活化的 CD4+ T 细胞/B 细胞集群的形成和成熟浆细胞的移出。重要的是,髓系细胞能捕获和表达由脂质纳米颗粒载体的mRNA,从而能评估对mRNA疫苗的反应。比较芯片上对武汉单价和武汉/奥美康二价mRNA疫苗的反应显示,奥美康中和抗体的诱导效果相当,这表明免疫印记与体内报道的一样。因此,LO 芯片是一个适用于疫苗增强策略临床前评估的多功能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
1.30%
发文量
189
审稿时长
3-8 weeks
期刊介绍: Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field. Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions. Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.
期刊最新文献
Interleukin-33-activated basophils promote asthma by regulating Th2 cell entry into lung tissue. Inhibition of hTERT/telomerase/telomere mediates therapeutic efficacy of osimertinib in EGFR mutant lung cancer. SMARCA5-mediated chromatin remodeling is required for germinal center formation. Targeting TNF/TNFR superfamilies in immune-mediated inflammatory diseases. Transport of β-amyloid from brain to eye causes retinal degeneration in Alzheimer's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1