CRISPR/Cas9-mediated multiplex gene editing of gamma and omega gliadins: paving the way for gliadin-free wheat.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES Journal of Experimental Botany Pub Date : 2024-12-04 DOI:10.1093/jxb/erae376
Susana Sánchez-León, Miriam Marín-Sanz, María H Guzmán-López, Marta Gavilán-Camacho, Edurne Simón, Francisco Barro
{"title":"CRISPR/Cas9-mediated multiplex gene editing of gamma and omega gliadins: paving the way for gliadin-free wheat.","authors":"Susana Sánchez-León, Miriam Marín-Sanz, María H Guzmán-López, Marta Gavilán-Camacho, Edurne Simón, Francisco Barro","doi":"10.1093/jxb/erae376","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat is a staple cereal in the human diet. Despite its significance, an increasing percentage of the population suffers adverse reactions to wheat, which are triggered by wheat gluten, particularly the gliadin fractions. In this study, we employed CRISPR/Cas [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein] multiplexing to introduce targeted mutations into γ- and ω-gliadin genes of wheat, to produce lines deficient in one or both immunogenic gliadin fractions simultaneously. For this study, eight single guide RNAs (sgRNAs) were designed and combined into four plasmids to produce 59 modified wheat lines, of which 20 exhibited mutations in the target genes. Characterization of these lines through Sanger sequencing or next-generation sequencing revealed a complex pattern of InDels, including deletions spanning multiple sgRNAs. The mutations were transmitted to the offspring, and the analysis of homozygous derived lines by reverse-phase HPLC and monoclonal antibodies showed a 97.7% reduction in gluten content. Crossing these lines with other CRISPR/Cas lines deficient in the α-gliadins allowed multiple mutations to be combined. This work represents an important step forward in the use of CRISPR/Cas to develop gluten-free wheat.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"7079-7095"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630021/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae376","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Wheat is a staple cereal in the human diet. Despite its significance, an increasing percentage of the population suffers adverse reactions to wheat, which are triggered by wheat gluten, particularly the gliadin fractions. In this study, we employed CRISPR/Cas [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein] multiplexing to introduce targeted mutations into γ- and ω-gliadin genes of wheat, to produce lines deficient in one or both immunogenic gliadin fractions simultaneously. For this study, eight single guide RNAs (sgRNAs) were designed and combined into four plasmids to produce 59 modified wheat lines, of which 20 exhibited mutations in the target genes. Characterization of these lines through Sanger sequencing or next-generation sequencing revealed a complex pattern of InDels, including deletions spanning multiple sgRNAs. The mutations were transmitted to the offspring, and the analysis of homozygous derived lines by reverse-phase HPLC and monoclonal antibodies showed a 97.7% reduction in gluten content. Crossing these lines with other CRISPR/Cas lines deficient in the α-gliadins allowed multiple mutations to be combined. This work represents an important step forward in the use of CRISPR/Cas to develop gluten-free wheat.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRISPR/Cas9 介导的γ 和ω 胶质蛋白多重基因编辑,为实现无胶质蛋白小麦铺平道路。
小麦是人类饮食中的主食谷物。尽管小麦非常重要,但越来越多的人对小麦产生不良反应,这些不良反应是由小麦麸质引发的,尤其是麦胶蛋白部分。在这项研究中,我们利用 CRISPR/Cas 多路复用技术将靶向突变导入小麦的 γ- 和 ω- 胶质蛋白基因,从而培育出同时缺乏一种或两种免疫原性胶质蛋白组分的品系。在这项工作中,设计了 8 个单引导 RNA(sgRNA),并将其组合到 4 个质粒中,培育出 59 个改良小麦品系,其中 20 个品系的目标基因发生了突变。通过 Sanger 或 NGS 测序对这些品系进行鉴定,发现了复杂的 InDels 模式,包括跨越多个 sgRNA 的缺失。突变会遗传给后代,通过 RP-HPLC 和单克隆抗体对同源基因衍生品系的分析表明,谷蛋白含量降低了 97.7%。将这些品系与其他缺乏α-神经胶质蛋白的CRISPR/Cas品系杂交,可以将多种突变结合起来。这项工作标志着利用 CRISPR/Cas 开发无麸质小麦向前迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
期刊最新文献
The bitter truth: how insects cope with toxic plant alkaloids. Recent advances in paclitaxel biosynthesis and regulation. Harnessing controlled-environment systems for enhanced production of medicinal plants. Genomic and cell-specific regulation of benzylisoquinoline alkaloid biosynthesis in opium poppy. Same, yet different: towards understanding nutrient use in hemp- and drug-type Cannabis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1