The FHA domain is essential for autoinhibition of KIF1A/UNC-104 proteins.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Journal of cell science Pub Date : 2024-10-01 Epub Date: 2024-10-10 DOI:10.1242/jcs.262017
Shinsuke Niwa, Taisei Watanabe, Kyoko Chiba
{"title":"The FHA domain is essential for autoinhibition of KIF1A/UNC-104 proteins.","authors":"Shinsuke Niwa, Taisei Watanabe, Kyoko Chiba","doi":"10.1242/jcs.262017","DOIUrl":null,"url":null,"abstract":"<p><p>KIF1A/UNC-104 proteins, which are members of the kinesin superfamily of motor proteins, play a pivotal role in the axonal transport of synaptic vesicles and their precursors. Drosophila melanogaster UNC-104 (DmUNC-104) is a relatively recently discovered Drosophila kinesin. Although some point mutations that disrupt synapse formation have been identified, the biochemical properties of the DmUNC-104 protein have not been investigated. Here, we prepared recombinant full-length DmUNC-104 protein and determined its biochemical features. We analyzed the effect of a previously identified missense mutation in the forkhead-associated (FHA) domain, called bristly (bris). The bris mutation strongly promoted the dimerization of DmUNC-104 protein, whereas wild-type DmUNC-104 was a mixture of monomers and dimers. We further tested the G618R mutation near the FHA domain, which was previously shown to disrupt the autoinhibition of Caenorhabditis elegans UNC-104. The biochemical properties of the G618R mutant recapitulated those of the bris mutant. Finally, we found that disease-associated mutations also promote the dimerization of DmUNC-104. Collectively, our results suggest that the FHA domain is essential for autoinhibition of KIF1A/UNC-104 proteins, and that abnormal dimerization of KIF1A might be linked to human diseases.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.262017","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

KIF1A/UNC-104 proteins, which are members of the kinesin superfamily of motor proteins, play a pivotal role in the axonal transport of synaptic vesicles and their precursors. Drosophila melanogaster UNC-104 (DmUNC-104) is a relatively recently discovered Drosophila kinesin. Although some point mutations that disrupt synapse formation have been identified, the biochemical properties of the DmUNC-104 protein have not been investigated. Here, we prepared recombinant full-length DmUNC-104 protein and determined its biochemical features. We analyzed the effect of a previously identified missense mutation in the forkhead-associated (FHA) domain, called bristly (bris). The bris mutation strongly promoted the dimerization of DmUNC-104 protein, whereas wild-type DmUNC-104 was a mixture of monomers and dimers. We further tested the G618R mutation near the FHA domain, which was previously shown to disrupt the autoinhibition of Caenorhabditis elegans UNC-104. The biochemical properties of the G618R mutant recapitulated those of the bris mutant. Finally, we found that disease-associated mutations also promote the dimerization of DmUNC-104. Collectively, our results suggest that the FHA domain is essential for autoinhibition of KIF1A/UNC-104 proteins, and that abnormal dimerization of KIF1A might be linked to human diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FHA 结构域对 KIF1A/UNC-104 的自动抑制作用至关重要。
KIF1A/UNC-104 是驱动蛋白超家族运动蛋白的一员,在突触小泡及其前体的轴突运输中起着关键作用。黑腹果蝇 UNC-104(DmUNC-104)是最近才发现的一种果蝇驱动蛋白。虽然已经发现了一些能破坏突触形成的点突变,但对 DmUNC-104 蛋白的生化特性还没有进行研究。在此,我们制备了重组的全长 DmUNC-104 蛋白,并测定了其生化特性。我们分析了之前发现的叉头相关(FHA)结构域中的一个错义突变(称为 bristly(bris))的影响。bris 突变强烈促进了 DmUNC-104 蛋白的二聚化,而野生型 DmUNC-104 则是单体和二聚体的混合物。我们进一步测试了 FHA 结构域附近的 G618R 突变,该突变先前已被证明会破坏秀丽隐杆线虫 UNC-104 的自动抑制作用。G618R 突变体的生化特性再现了 bris 突变体的生化特性。最后,我们发现疾病相关突变也会促进 DmUNC-104 的二聚化。总之,我们的研究结果表明,FHA结构域对KIF1A/UNC-104的自身抑制作用至关重要,KIF1A的异常二聚化与人类疾病有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
期刊最新文献
Bi-phasic DNA damage and non-canonical replication stress response govern radiation-induced senescence in Glioblastoma. Ankyrin-B is required for the establishment and maintenance of lens cytoarchitecture, mechanics, and clarity. Apical integrins as a switchable target to regulate the epithelial barrier. Mutations in the DNA processivity factor PCNA (POL30) predispose to epigenetic instability at the FLO11 locus. DRAK2 regulates myosin light chain phosphorylation in T cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1