首页 > 最新文献

Journal of cell science最新文献

英文 中文
Regulation of mitochondrial cristae organization by Myo19, Miro1 and Miro2, and metaxin 3.
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-05-01 Epub Date: 2025-03-06 DOI: 10.1242/jcs.263637
Samruddhi S Shembekar, Petra Nikolaus, Ulrike Honnert, Marcus Höring, Aya Attia, Karin Topp, Birgit Lohmann, Gerhard Liebisch, Martin Bähler

The actin-based motor myosin-19 (Myo19) exerts force on mitochondrial membrane receptors Miro1/2, influencing endoplasmic reticulum (ER)-mitochondria contact sites and mitochondrial cristae structure. The mitochondrial intermembrane bridging (MIB) complex connects the outer and inner mitochondrial membranes at the cristae junction through the mitochondrial contact site and cristae organization system (MICOS). However, the interaction between Myo19, Miro1 and Miro2 (hereafter Miro1/2), and the MIB-MICOS complex in cristae regulation remains unclear. This study investigates the roles of Miro1/2 and metaxin 3 (Mtx3), a MIB complex component, in linking Myo19 to MIB-MICOS. We show that Miro1/2 interact with Myo19 and the MIB complex but not with Mtx3. Their mitochondrial membrane anchors are not essential for MIB interaction or cristae structure. However, Mtx3 is crucial for the connection between MIB-MICOS and the Myo19 and Miro1/2 proteins. Deleting Miro1/2 mimics the effects of Myo19 deficiency on ER-mitochondria contacts and cristae structure, whereas Mtx3 deletion does not. Notably, the loss of Myo19 and Miro1/2 alters mitochondrial lipid composition, reducing cardiolipin and its precursors, suggesting Myo19 and Miro1/2 influence cristae indirectly via lipid transfer at ER-mitochondria contact sites.

{"title":"Regulation of mitochondrial cristae organization by Myo19, Miro1 and Miro2, and metaxin 3.","authors":"Samruddhi S Shembekar, Petra Nikolaus, Ulrike Honnert, Marcus Höring, Aya Attia, Karin Topp, Birgit Lohmann, Gerhard Liebisch, Martin Bähler","doi":"10.1242/jcs.263637","DOIUrl":"10.1242/jcs.263637","url":null,"abstract":"<p><p>The actin-based motor myosin-19 (Myo19) exerts force on mitochondrial membrane receptors Miro1/2, influencing endoplasmic reticulum (ER)-mitochondria contact sites and mitochondrial cristae structure. The mitochondrial intermembrane bridging (MIB) complex connects the outer and inner mitochondrial membranes at the cristae junction through the mitochondrial contact site and cristae organization system (MICOS). However, the interaction between Myo19, Miro1 and Miro2 (hereafter Miro1/2), and the MIB-MICOS complex in cristae regulation remains unclear. This study investigates the roles of Miro1/2 and metaxin 3 (Mtx3), a MIB complex component, in linking Myo19 to MIB-MICOS. We show that Miro1/2 interact with Myo19 and the MIB complex but not with Mtx3. Their mitochondrial membrane anchors are not essential for MIB interaction or cristae structure. However, Mtx3 is crucial for the connection between MIB-MICOS and the Myo19 and Miro1/2 proteins. Deleting Miro1/2 mimics the effects of Myo19 deficiency on ER-mitochondria contacts and cristae structure, whereas Mtx3 deletion does not. Notably, the loss of Myo19 and Miro1/2 alters mitochondrial lipid composition, reducing cardiolipin and its precursors, suggesting Myo19 and Miro1/2 influence cristae indirectly via lipid transfer at ER-mitochondria contact sites.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activation of the mitochondrial unfolded protein response regulates the dynamic formation of stress granules. 线粒体未折叠蛋白反应的激活调节应激颗粒的动态形成。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-05-01 Epub Date: 2024-12-05 DOI: 10.1242/jcs.263548
Marta Lopez-Nieto, Zhaozhi Sun, Emily Relton, Rahme Safakli, Brian D Freibaum, J Paul Taylor, Alessia Ruggieri, Ioannis Smyrnias, Nicolas Locker

To rapidly adapt to harmful changes to their environment, cells activate the integrated stress response (ISR). This results in an adaptive transcriptional and translational rewiring, and the formation of biomolecular condensates named stress granules (SGs), to resolve stress. In addition to this first line of defence, the mitochondrial unfolded protein response (UPRmt) activates a specific transcriptional programme to maintain mitochondrial homeostasis. We present evidence that the SG formation and UPRmt pathways are intertwined and communicate. UPRmt induction results in eIF2α phosphorylation and the initial and transient formation of SGs, which subsequently disassemble. The induction of GADD34 (also known as PPP1R15A) during late UPRmt protects cells from prolonged stress by impairing further assembly of SGs. Furthermore, mitochondrial functions and cellular survival are enhanced during UPRmt activation when SGs are absent, suggesting that UPRmt-induced SGs have an adverse effect on mitochondrial homeostasis. These findings point to a novel crosstalk between SGs and the UPRmt that might contribute to restoring mitochondrial functions under stressful conditions.

为了迅速适应有害的环境变化,细胞会启动综合应激反应(ISR)。这将导致适应性转录和翻译重构,并形成名为应激颗粒(SGs)的生物分子凝聚体,以解决应激问题。除了这第一道防线之外,线粒体未折叠蛋白反应(UPRmt)也激活了一种特定的转录程序,以维持线粒体的平衡。我们提出的证据表明,SGs 和 UPRmt 途径是相互交织和沟通的。UPRmt 诱导会导致 eIF2a 磷酸化和 SG 的初步和短暂形成,随后 SG 会解体。在晚期 UPRmt 过程中诱导 GADD34 可通过损害 SG 的进一步组装来保护细胞免受长期应激。此外,在 UPRmt 激活过程中,当 SGs 缺失时,线粒体功能和细胞存活率都会提高,这表明 UPRmt 诱导的 SGs 对线粒体稳态有不利影响。这些发现表明,SGs 和 UPRmt 之间存在一种新的串扰,可能有助于在应激条件下恢复线粒体功能。
{"title":"Activation of the mitochondrial unfolded protein response regulates the dynamic formation of stress granules.","authors":"Marta Lopez-Nieto, Zhaozhi Sun, Emily Relton, Rahme Safakli, Brian D Freibaum, J Paul Taylor, Alessia Ruggieri, Ioannis Smyrnias, Nicolas Locker","doi":"10.1242/jcs.263548","DOIUrl":"10.1242/jcs.263548","url":null,"abstract":"<p><p>To rapidly adapt to harmful changes to their environment, cells activate the integrated stress response (ISR). This results in an adaptive transcriptional and translational rewiring, and the formation of biomolecular condensates named stress granules (SGs), to resolve stress. In addition to this first line of defence, the mitochondrial unfolded protein response (UPRmt) activates a specific transcriptional programme to maintain mitochondrial homeostasis. We present evidence that the SG formation and UPRmt pathways are intertwined and communicate. UPRmt induction results in eIF2α phosphorylation and the initial and transient formation of SGs, which subsequently disassemble. The induction of GADD34 (also known as PPP1R15A) during late UPRmt protects cells from prolonged stress by impairing further assembly of SGs. Furthermore, mitochondrial functions and cellular survival are enhanced during UPRmt activation when SGs are absent, suggesting that UPRmt-induced SGs have an adverse effect on mitochondrial homeostasis. These findings point to a novel crosstalk between SGs and the UPRmt that might contribute to restoring mitochondrial functions under stressful conditions.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondria-plasma membrane contact sites regulate the ER-mitochondria encounter structure.
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-05-01 Epub Date: 2025-02-18 DOI: 10.1242/jcs.263685
Jason C Casler, Clare S Harper, Laura L Lackner

Cells form multiple, molecularly distinct membrane contact sites (MCSs) between organelles. Despite knowing the molecular identity of several of these complexes, little is known about how MCSs are coordinately regulated in space and time to promote organelle function. Here, we examined two well-characterized mitochondria-endoplasmic reticulum (ER) MCSs - the ER-mitochondria encounter structure (ERMES) and the mitochondria-ER-cortex anchor (MECA) in Saccharomyces cerevisiae. We report that loss of MECA results in a substantial reduction in the number of ERMES contacts. Rather than reducing ERMES protein levels, loss of MECA results in an increase in the size of ERMES contacts. Using live-cell microscopy, we demonstrate that ERMES contacts display several dynamic behaviors, such as de novo formation, fusion and fission, that are altered in the absence of MECA or by changes in growth conditions. Unexpectedly, we find that the mitochondria-plasma membrane (PM) tethering, and not the mitochondria-ER tethering, function of MECA regulates ERMES contacts. Remarkably, synthetic tethering of mitochondria to the PM in the absence of MECA is sufficient to rescue the distribution of ERMES foci. Overall, our work reveals how one MCS can influence the regulation and function of another.

{"title":"Mitochondria-plasma membrane contact sites regulate the ER-mitochondria encounter structure.","authors":"Jason C Casler, Clare S Harper, Laura L Lackner","doi":"10.1242/jcs.263685","DOIUrl":"10.1242/jcs.263685","url":null,"abstract":"<p><p>Cells form multiple, molecularly distinct membrane contact sites (MCSs) between organelles. Despite knowing the molecular identity of several of these complexes, little is known about how MCSs are coordinately regulated in space and time to promote organelle function. Here, we examined two well-characterized mitochondria-endoplasmic reticulum (ER) MCSs - the ER-mitochondria encounter structure (ERMES) and the mitochondria-ER-cortex anchor (MECA) in Saccharomyces cerevisiae. We report that loss of MECA results in a substantial reduction in the number of ERMES contacts. Rather than reducing ERMES protein levels, loss of MECA results in an increase in the size of ERMES contacts. Using live-cell microscopy, we demonstrate that ERMES contacts display several dynamic behaviors, such as de novo formation, fusion and fission, that are altered in the absence of MECA or by changes in growth conditions. Unexpectedly, we find that the mitochondria-plasma membrane (PM) tethering, and not the mitochondria-ER tethering, function of MECA regulates ERMES contacts. Remarkably, synthetic tethering of mitochondria to the PM in the absence of MECA is sufficient to rescue the distribution of ERMES foci. Overall, our work reveals how one MCS can influence the regulation and function of another.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fis1 regulates mitochondrial morphology, bioenergetics and removal of mitochondrial DNA damage in irradiated glioblastoma cells. Fis1调节辐照胶质母细胞瘤细胞的线粒体形态、生物能量学和mtDNA损伤的去除。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-05-01 Epub Date: 2025-01-28 DOI: 10.1242/jcs.263459
Yuli Buckley, Maria S K Stoll, Charles L Hoppel, Jason A Mears

In response to external stress, mitochondrial dynamics is often disrupted, but the associated physiologic changes are often uncharacterized. In many cancers, including glioblastoma (GBM), mitochondrial dysfunction has been observed. Understanding how mitochondrial dynamics and physiology contribute to treatment resistance will lead to more targeted and effective therapeutics. This study aims to uncover how mitochondria in GBM cells adapt to and resist ionizing radiation (IR), a component of the standard of care for GBM. Using several approaches, we investigated how mitochondrial dynamics and physiology adapt to radiation stress, and we uncover a novel role for Fis1, a pro-fission protein, in regulating the stress response through mitochondrial DNA (mtDNA) maintenance and altered mitochondrial bioenergetics. Importantly, our data demonstrate that increased fission in response to IR leads to removal of mtDNA damage and more efficient oxygen consumption through altered electron transport chain (ETC) activities in intact mitochondria. These findings demonstrate a key role for Fis1 in targeting damaged mtDNA for degradation and regulating mitochondrial bioenergetics through altered dynamics.

在对外界应激的反应中,线粒体动力学经常被破坏,但相关的生理变化往往是不明确的。在许多癌症中,包括胶质母细胞瘤(GBM),线粒体功能障碍已被观察到。了解线粒体动力学和生理如何促进治疗耐药性将导致更有针对性和有效的治疗。本研究旨在揭示GBM细胞中的线粒体如何适应和抵抗电离辐射(IR),电离辐射是GBM护理标准的一个组成部分。利用多种方法,我们研究了线粒体动力学和生理如何适应辐射胁迫,并揭示了Fis1(一种促裂变蛋白)通过线粒体DNA (mtDNA)维持和线粒体生物能量学改变来调节应激反应的新作用。重要的是,我们的数据表明,响应IR的裂变增加导致mtDNA损伤的去除,并通过改变完整线粒体中的ETC活性来提高氧气消耗效率。这些发现证明了Fis1在靶向受损mtDNA降解和通过改变动力学调节线粒体生物能量学方面的关键作用。
{"title":"Fis1 regulates mitochondrial morphology, bioenergetics and removal of mitochondrial DNA damage in irradiated glioblastoma cells.","authors":"Yuli Buckley, Maria S K Stoll, Charles L Hoppel, Jason A Mears","doi":"10.1242/jcs.263459","DOIUrl":"10.1242/jcs.263459","url":null,"abstract":"<p><p>In response to external stress, mitochondrial dynamics is often disrupted, but the associated physiologic changes are often uncharacterized. In many cancers, including glioblastoma (GBM), mitochondrial dysfunction has been observed. Understanding how mitochondrial dynamics and physiology contribute to treatment resistance will lead to more targeted and effective therapeutics. This study aims to uncover how mitochondria in GBM cells adapt to and resist ionizing radiation (IR), a component of the standard of care for GBM. Using several approaches, we investigated how mitochondrial dynamics and physiology adapt to radiation stress, and we uncover a novel role for Fis1, a pro-fission protein, in regulating the stress response through mitochondrial DNA (mtDNA) maintenance and altered mitochondrial bioenergetics. Importantly, our data demonstrate that increased fission in response to IR leads to removal of mtDNA damage and more efficient oxygen consumption through altered electron transport chain (ETC) activities in intact mitochondria. These findings demonstrate a key role for Fis1 in targeting damaged mtDNA for degradation and regulating mitochondrial bioenergetics through altered dynamics.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct neutrophil and T cell contact with macrophages induces release of phagosomally processed PAMPs via eructophagy.
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-28 DOI: 10.1242/jcs.263731
Jenny A Nguyen, Tanis L Orsetti, Philip Vernon, Catherine J Greene, Neil McKenna, Robin M Yates

Macrophages play a pivotal role in clearing debris and microbes from the microenvironment via phagocytosis and orchestrating local inflammation. While mostly understood to be through the synthesis and secretion of soluble mediators such as cytokines and eicosanoids, it has been recently proposed that macrophages can release previously phagocytosed and processed PAMPs and DAMPs into the local microenvironment via a process termed eructophagy, and that these, in turn, can activate recently vicinal leukocytes. Additionally, it has been commonly observed that local macrophages physically interact with other leukocytes, such as neutrophils and T cells, recruited to sites of inflammation. This study demonstrated that eructophagy in macrophages is significantly induced during physical interaction with neutrophils and T cells, which is mediated by ICAM1 on macrophages and LFA1 on neutrophils/T cells. Notably, ICAM1 activation alone is sufficient to trigger eructophagy in macrophages and is dependent on Lyn kinase. Through this mechanism, it is proposed that neutrophils and lymphocytes can influence their own activation by interacting with local macrophages containing PAMP-containing phagolysosomes, which subsequently triggers PAMP release into the local microenvironment through eructophagy.

{"title":"Direct neutrophil and T cell contact with macrophages induces release of phagosomally processed PAMPs via eructophagy.","authors":"Jenny A Nguyen, Tanis L Orsetti, Philip Vernon, Catherine J Greene, Neil McKenna, Robin M Yates","doi":"10.1242/jcs.263731","DOIUrl":"https://doi.org/10.1242/jcs.263731","url":null,"abstract":"<p><p>Macrophages play a pivotal role in clearing debris and microbes from the microenvironment via phagocytosis and orchestrating local inflammation. While mostly understood to be through the synthesis and secretion of soluble mediators such as cytokines and eicosanoids, it has been recently proposed that macrophages can release previously phagocytosed and processed PAMPs and DAMPs into the local microenvironment via a process termed eructophagy, and that these, in turn, can activate recently vicinal leukocytes. Additionally, it has been commonly observed that local macrophages physically interact with other leukocytes, such as neutrophils and T cells, recruited to sites of inflammation. This study demonstrated that eructophagy in macrophages is significantly induced during physical interaction with neutrophils and T cells, which is mediated by ICAM1 on macrophages and LFA1 on neutrophils/T cells. Notably, ICAM1 activation alone is sufficient to trigger eructophagy in macrophages and is dependent on Lyn kinase. Through this mechanism, it is proposed that neutrophils and lymphocytes can influence their own activation by interacting with local macrophages containing PAMP-containing phagolysosomes, which subsequently triggers PAMP release into the local microenvironment through eructophagy.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piezo1-induced durotaxis of pancreatic stellate cells depends on TRPC1 and TRPV4 channels.
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-28 DOI: 10.1242/jcs.263846
Ilka Budde, André Schlichting, David Ing, Sandra Schimmelpfennig, Anna Kuntze, Benedikt Fels, Joelle M-J Romac, Sandip M Swain, Rodger A Liddle, Angela Stevens, Albrecht Schwab, Zoltán Pethő

Pancreatic stellate cells (PSCs) are primarily responsible for producing the stiff tumor tissue in pancreatic ductal adenocarcinoma (PDAC). Thereby, PSCs generate a stiffness gradient between the healthy pancreas and the tumor. This gradient induces durotaxis, a form of directional cell migration driven by differential stiffness. However, the molecular sensors behind durotaxis are still unclear. To investigate the role of mechanosensitive ion channels in PSC durotaxis, we established a two-dimensional stiffness gradient mimicking PDAC. Using pharmacological and genetic methods, we investigated the contribution of the ion channels Piezo1, TRPC1, and TRPV4 in PSC durotaxis. We found that PSC migration towards a stiffer substrate is diminished by altering Piezo1 activity. Moreover, disrupting TRPC1 along with TRPV4 abolishes PSC durotaxis even when Piezo1 is functional. Our results demonstrate that optimal PSC durotaxis requires an intermediary level of ion channel activity, which we simulated via a numerically discretized mathematical model. These findings suggest that mechanosensitive Piezo1 channels detect the differential stiffness microenvironment. The resulting intracellular signals are amplified by TRPV4 and TRPC1 channels to guide efficient PSC durotaxis.

{"title":"Piezo1-induced durotaxis of pancreatic stellate cells depends on TRPC1 and TRPV4 channels.","authors":"Ilka Budde, André Schlichting, David Ing, Sandra Schimmelpfennig, Anna Kuntze, Benedikt Fels, Joelle M-J Romac, Sandip M Swain, Rodger A Liddle, Angela Stevens, Albrecht Schwab, Zoltán Pethő","doi":"10.1242/jcs.263846","DOIUrl":"10.1242/jcs.263846","url":null,"abstract":"<p><p>Pancreatic stellate cells (PSCs) are primarily responsible for producing the stiff tumor tissue in pancreatic ductal adenocarcinoma (PDAC). Thereby, PSCs generate a stiffness gradient between the healthy pancreas and the tumor. This gradient induces durotaxis, a form of directional cell migration driven by differential stiffness. However, the molecular sensors behind durotaxis are still unclear. To investigate the role of mechanosensitive ion channels in PSC durotaxis, we established a two-dimensional stiffness gradient mimicking PDAC. Using pharmacological and genetic methods, we investigated the contribution of the ion channels Piezo1, TRPC1, and TRPV4 in PSC durotaxis. We found that PSC migration towards a stiffer substrate is diminished by altering Piezo1 activity. Moreover, disrupting TRPC1 along with TRPV4 abolishes PSC durotaxis even when Piezo1 is functional. Our results demonstrate that optimal PSC durotaxis requires an intermediary level of ion channel activity, which we simulated via a numerically discretized mathematical model. These findings suggest that mechanosensitive Piezo1 channels detect the differential stiffness microenvironment. The resulting intracellular signals are amplified by TRPV4 and TRPC1 channels to guide efficient PSC durotaxis.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macromolecular and cytological changes in fission yeast G0 nuclei.
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-27 DOI: 10.1242/jcs.263654
Zhi Yang Tan, Shujun Cai, Saayli A Paithankar, Tingsheng Liu, Xin Nie, Jian Shi, Lu Gan

When starved of nitrogen, fission yeast Schizosaccharomyces pombe cells enter a quiescent "G0" state with smaller nuclei and transcriptional repression. The genomics of S. pombe G0 cells has been well studied, but much of its nuclear cell biology remains unknown. Here we use confocal microscopy, immunoblots, and electron cryotomography to investigate the cytological, biochemical, and ultrastructural differences between S. pombe proliferating, G1-arrested, and G0 cell nuclei, with an emphasis on the histone acetylation, RNA polymerase II fates, and macromolecular complex packing. Compared to proliferating cells, G0 cells have lower levels of histone acetylation, nuclear RNA polymerase II, and active transcription. The G0 nucleus has similar macromolecular crowding yet fewer chromatin-associated multi-megadalton globular complexes. Induced histone hyperacetylation during nitrogen starvation results in cells that have larger nuclei and therefore less compact chromatin. However, these histone-hyperacetylated cells remain transcriptionally repressed with similar nuclear crowding. Canonical nucleosomes - those that resemble the crystal structure - are rare in proliferating, G1-arrested, and G0 cells. Our study therefore shows that extreme changes in nucleus physiology are possible without extreme reorganisation at the macromolecular level.

当缺乏氮元素时,裂殖酵母细胞会进入静止的 "G0 "状态,细胞核变小,转录抑制。庞贝酵母 G0 细胞的基因组学已经得到了很好的研究,但其核细胞生物学的大部分内容仍然未知。在这里,我们使用共聚焦显微镜、免疫印迹和电子冷冻成像技术研究了 S. pombe 增殖细胞、G1-停滞细胞和 G0 细胞核在细胞学、生物化学和超微结构方面的差异,重点研究了组蛋白乙酰化、RNA 聚合酶 II 的命运和大分子复合物的包装。与增殖细胞相比,G0 细胞的组蛋白乙酰化、核 RNA 聚合酶 II 和活跃转录水平较低。G0细胞核具有类似的大分子拥挤现象,但染色质相关的多质子球状复合物较少。在氮饥饿过程中诱导组蛋白过乙酰化会导致细胞核变大,从而使染色质不那么紧密。然而,这些组蛋白过乙酰化的细胞仍然受到转录抑制,具有类似的核拥挤现象。在增殖细胞、G1-停滞细胞和 G0 细胞中,典型核小体(与晶体结构相似的核小体)很少见。因此,我们的研究表明,细胞核生理发生极端变化时,大分子水平不会发生极端重组。
{"title":"Macromolecular and cytological changes in fission yeast G0 nuclei.","authors":"Zhi Yang Tan, Shujun Cai, Saayli A Paithankar, Tingsheng Liu, Xin Nie, Jian Shi, Lu Gan","doi":"10.1242/jcs.263654","DOIUrl":"https://doi.org/10.1242/jcs.263654","url":null,"abstract":"<p><p>When starved of nitrogen, fission yeast Schizosaccharomyces pombe cells enter a quiescent \"G0\" state with smaller nuclei and transcriptional repression. The genomics of S. pombe G0 cells has been well studied, but much of its nuclear cell biology remains unknown. Here we use confocal microscopy, immunoblots, and electron cryotomography to investigate the cytological, biochemical, and ultrastructural differences between S. pombe proliferating, G1-arrested, and G0 cell nuclei, with an emphasis on the histone acetylation, RNA polymerase II fates, and macromolecular complex packing. Compared to proliferating cells, G0 cells have lower levels of histone acetylation, nuclear RNA polymerase II, and active transcription. The G0 nucleus has similar macromolecular crowding yet fewer chromatin-associated multi-megadalton globular complexes. Induced histone hyperacetylation during nitrogen starvation results in cells that have larger nuclei and therefore less compact chromatin. However, these histone-hyperacetylated cells remain transcriptionally repressed with similar nuclear crowding. Canonical nucleosomes - those that resemble the crystal structure - are rare in proliferating, G1-arrested, and G0 cells. Our study therefore shows that extreme changes in nucleus physiology are possible without extreme reorganisation at the macromolecular level.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143515822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting the SunTag system to study the developmental regulation of mRNA translation.
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-24 DOI: 10.1242/jcs.263457
Alastair Pizzey, Catherine Sutcliffe, Jennifer C Love, Emmanuel Akabuogu, Magnus Rattray, Mark P Ashe, Hilary L Ashe

The ability to quantitatively study mRNA translation using SunTag imaging is transforming our understanding of the translation process. Here, we expand the SunTag method to study new aspects of translation regulation in Drosophila. Repression of the maternal hunchback (hb) mRNA in the posterior of the Drosophila embryo is a textbook example of translational control. Using SunTag imaging to quantitate translation of maternal SunTag-hb mRNAs, we show that repression in the posterior is leaky as ∼5% of SunTag-hb mRNAs are translated. In the anterior of the embryo, the maternal and zygotic SunTag-hb mRNAs show similar translation efficiency despite having different UTRs. We demonstrate that the SunTag-hb mRNA can be used as a reporter to study ribosome pausing at single-mRNA resolution, by exploiting the conserved xbp1 mRNA and A60 pausing sequences. Finally, we adapt the detector component of the SunTag system to visualise and quantitate translation of the short gastrulation (sog) mRNA, encoding an essential secreted extracellular BMP regulator, at the endoplasmic reticulum in fixed and live embryos. Together, these tools will facilitate the future dissection of translation regulatory mechanisms during development.

{"title":"Exploiting the SunTag system to study the developmental regulation of mRNA translation.","authors":"Alastair Pizzey, Catherine Sutcliffe, Jennifer C Love, Emmanuel Akabuogu, Magnus Rattray, Mark P Ashe, Hilary L Ashe","doi":"10.1242/jcs.263457","DOIUrl":"https://doi.org/10.1242/jcs.263457","url":null,"abstract":"<p><p>The ability to quantitatively study mRNA translation using SunTag imaging is transforming our understanding of the translation process. Here, we expand the SunTag method to study new aspects of translation regulation in Drosophila. Repression of the maternal hunchback (hb) mRNA in the posterior of the Drosophila embryo is a textbook example of translational control. Using SunTag imaging to quantitate translation of maternal SunTag-hb mRNAs, we show that repression in the posterior is leaky as ∼5% of SunTag-hb mRNAs are translated. In the anterior of the embryo, the maternal and zygotic SunTag-hb mRNAs show similar translation efficiency despite having different UTRs. We demonstrate that the SunTag-hb mRNA can be used as a reporter to study ribosome pausing at single-mRNA resolution, by exploiting the conserved xbp1 mRNA and A60 pausing sequences. Finally, we adapt the detector component of the SunTag system to visualise and quantitate translation of the short gastrulation (sog) mRNA, encoding an essential secreted extracellular BMP regulator, at the endoplasmic reticulum in fixed and live embryos. Together, these tools will facilitate the future dissection of translation regulatory mechanisms during development.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143482950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The formation of chaperone-rich GET bodies depends on the tetratricopeptide repeat region of Sgt2 and is reversed by NADH.
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-20 DOI: 10.1242/jcs.263616
Jonas Jennrich, Ákos Farkas, Henning Urlaub, Blanche Schwappach, Katherine E Bohnsack

The guided-entry of tail-anchored proteins (GET) pathway is a post-translational targeting route to the endoplasmic reticulum. Upon glucose withdrawal, the soluble GET proteins re-localize to dynamic cytosolic foci, here termed GET bodies. Our data reveal that the pre-targeting complex components, Sgt2 and the Get4-Get5 heterodimer, and the Get3 ATPase play important roles in the assembly of these structures. More specifically, the TPR region of Sgt2 is required as a GET body scaffold. Systematic compositional analyses of GET bodies reveal their chaperone-rich nature and the presence of numerous proteins involved in metabolic processes. Temporal analyses of GET body assembly demonstrate the sequential recruitment of different chaperones, and we discover the requirement of Sis1 and Sti1 for maintaining the dynamic properties of these structures. In vivo, NADH derived from the oxidation of ethanol to acetaldehyde can induce GET body disassembly in a reaction depending on the alcohol dehydrogenase Adh2 and in vitro, addition of NADH resolves GET bodies. This suggests a mechanistic basis for their formation and disassembly in response to the metabolic shift caused by glucose withdrawal and re-addition.

{"title":"The formation of chaperone-rich GET bodies depends on the tetratricopeptide repeat region of Sgt2 and is reversed by NADH.","authors":"Jonas Jennrich, Ákos Farkas, Henning Urlaub, Blanche Schwappach, Katherine E Bohnsack","doi":"10.1242/jcs.263616","DOIUrl":"https://doi.org/10.1242/jcs.263616","url":null,"abstract":"<p><p>The guided-entry of tail-anchored proteins (GET) pathway is a post-translational targeting route to the endoplasmic reticulum. Upon glucose withdrawal, the soluble GET proteins re-localize to dynamic cytosolic foci, here termed GET bodies. Our data reveal that the pre-targeting complex components, Sgt2 and the Get4-Get5 heterodimer, and the Get3 ATPase play important roles in the assembly of these structures. More specifically, the TPR region of Sgt2 is required as a GET body scaffold. Systematic compositional analyses of GET bodies reveal their chaperone-rich nature and the presence of numerous proteins involved in metabolic processes. Temporal analyses of GET body assembly demonstrate the sequential recruitment of different chaperones, and we discover the requirement of Sis1 and Sti1 for maintaining the dynamic properties of these structures. In vivo, NADH derived from the oxidation of ethanol to acetaldehyde can induce GET body disassembly in a reaction depending on the alcohol dehydrogenase Adh2 and in vitro, addition of NADH resolves GET bodies. This suggests a mechanistic basis for their formation and disassembly in response to the metabolic shift caused by glucose withdrawal and re-addition.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SuperResNET - single-molecule network analysis detects changes to clathrin structure induced by small-molecule inhibitors. SuperResNET:单分子网络分析检测小分子抑制剂对凝集素结构的改变。
IF 3.3 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-15 Epub Date: 2025-02-20 DOI: 10.1242/jcs.263570
Timothy H Wong, Ismail M Khater, Christian Hallgrimson, Y Lydia Li, Ghassan Hamarneh, Ivan R Nabi

SuperResNET is a network analysis pipeline for the analysis of point cloud data generated by single-molecule localization microscopy (SMLM). Here, we applied SuperResNET network analysis of SMLM direct stochastic optical reconstruction microscopy (dSTORM) data to determine how the clathrin endocytosis inhibitors pitstop 2, dynasore and latrunculin A (LatA) alter the morphology of clathrin-coated pits. SuperResNET analysis of HeLa and Cos7 cells identified three classes of clathrin structures: small oligomers (class I), pits and vesicles (class II), and larger clusters corresponding to fused pits or clathrin plaques (class III). Pitstop 2 and dynasore treatment induced distinct homogeneous populations of class II structures in HeLa cells, suggesting that they arrest endocytosis at different stages. Inhibition of endocytosis was not via actin depolymerization, as the actin-depolymerizing agent LatA induced large, heterogeneous clathrin structures. Ternary analysis of SuperResNET shape features presented a distinct more planar profile for blobs from pitstop 2-treated cells, which aligned with clathrin pits identified with high-resolution minimal photon fluxes (MINFLUX) microscopy, whereas control structures resembled MINFLUX clathrin vesicles. SuperResNET analysis therefore showed that pitstop 2 arrests clathrin pit maturation at early stages of pit formation, representing an approach to detect the effect of small molecules on target structures in situ in the cell from SMLM datasets.

{"title":"SuperResNET - single-molecule network analysis detects changes to clathrin structure induced by small-molecule inhibitors.","authors":"Timothy H Wong, Ismail M Khater, Christian Hallgrimson, Y Lydia Li, Ghassan Hamarneh, Ivan R Nabi","doi":"10.1242/jcs.263570","DOIUrl":"10.1242/jcs.263570","url":null,"abstract":"<p><p>SuperResNET is a network analysis pipeline for the analysis of point cloud data generated by single-molecule localization microscopy (SMLM). Here, we applied SuperResNET network analysis of SMLM direct stochastic optical reconstruction microscopy (dSTORM) data to determine how the clathrin endocytosis inhibitors pitstop 2, dynasore and latrunculin A (LatA) alter the morphology of clathrin-coated pits. SuperResNET analysis of HeLa and Cos7 cells identified three classes of clathrin structures: small oligomers (class I), pits and vesicles (class II), and larger clusters corresponding to fused pits or clathrin plaques (class III). Pitstop 2 and dynasore treatment induced distinct homogeneous populations of class II structures in HeLa cells, suggesting that they arrest endocytosis at different stages. Inhibition of endocytosis was not via actin depolymerization, as the actin-depolymerizing agent LatA induced large, heterogeneous clathrin structures. Ternary analysis of SuperResNET shape features presented a distinct more planar profile for blobs from pitstop 2-treated cells, which aligned with clathrin pits identified with high-resolution minimal photon fluxes (MINFLUX) microscopy, whereas control structures resembled MINFLUX clathrin vesicles. SuperResNET analysis therefore showed that pitstop 2 arrests clathrin pit maturation at early stages of pit formation, representing an approach to detect the effect of small molecules on target structures in situ in the cell from SMLM datasets.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of cell science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1