Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression.

IF 3.3 4区 生物学 Q2 MICROBIOLOGY Journal of Microbiology Pub Date : 2024-09-06 DOI:10.1007/s12275-024-00167-4
Young Chae Park, Soo Yeon Choi, Yunah Cha, Hyeong Won Yoon, Young Min Son
{"title":"Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression.","authors":"Young Chae Park, Soo Yeon Choi, Yunah Cha, Hyeong Won Yoon, Young Min Son","doi":"10.1007/s12275-024-00167-4","DOIUrl":null,"url":null,"abstract":"<p><p>The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12275-024-00167-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微生物组-粘膜免疫关系:呼吸系统疾病进展的驱动力。
微生物组与粘膜免疫(尤其是呼吸道内的粘膜免疫)之间复杂的相互作用的重要性已引起人们的极大关注,因为它对肺部疾病的严重性和进展具有潜在的影响。因此,本综述总结了呼吸道特异性微生物组影响粘膜免疫并最终影响呼吸道健康的具体相互作用。此外,我们还讨论了微生物组如何影响粘膜免疫(考虑到组织特异性变化),以及微生物组在哮喘、慢性阻塞性肺病和肺癌等呼吸道疾病中的作用。此外,我们还研究了影响呼吸道微生物组和粘膜免疫反应之间关系的外部因素。通过探讨这些错综复杂的相互作用,这篇综述为了解基于微生物组的干预措施在调节粘膜免疫和减轻呼吸道疾病严重程度方面的潜力提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Microbiology
Journal of Microbiology 生物-微生物学
CiteScore
5.70
自引率
3.30%
发文量
0
审稿时长
3 months
期刊介绍: Publishes papers that deal with research on microorganisms, including archaea, bacteria, yeasts, fungi, microalgae, protozoa, and simple eukaryotic microorganisms. Topics considered for publication include Microbial Systematics, Evolutionary Microbiology, Microbial Ecology, Environmental Microbiology, Microbial Genetics, Genomics, Molecular Biology, Microbial Physiology, Biochemistry, Microbial Pathogenesis, Host-Microbe Interaction, Systems Microbiology, Synthetic Microbiology, Bioinformatics and Virology. Manuscripts dealing with simple identification of microorganism(s), cloning of a known gene and its expression in a microbial host, and clinical statistics will not be considered for publication by JM.
期刊最新文献
Recent Advances of Nipah Virus Disease: Pathobiology to Treatment and Vaccine Advancement Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression. Unexpected Requirement of Small Amino Acids at Position 183 for DNA Binding in the Escherichia coli cAMP Receptor Protein. The Gut Microbiota Mediates the Protective Effects of Spironolactone on Myocardial Infarction. Environmental Adaptability and Roles in Ammonia Oxidation of Aerobic Ammonia-Oxidizing Microorganisms in the Surface Sediments of East China Sea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1